转载自:博客园https://www.cnblogs.com/JVxie/p/4859889.html
C++:STL之heap操作:(博文的阅读密码:abcd111)
基本数据结构——堆的基本概念及其操作
在我刚听到堆这个名词的时候,我认为它是一堆东西的集合...
但其实吧它是利用完全二叉树的结构来维护一组数据 ,然后进行相关操作,一般的操作进行一次的时间复杂度在
O(1)~O(logn) 之间。
可谓是相当的引领时尚潮流啊(我不信学信息学的你 看到log和1的时间复杂度不会激动一下下)!。
什么是完全二叉树呢?别急着去百度啊,要百度我帮你百度:
若设二叉树的深度为 h ,除第 h 层外,其它各层 (1 ~ h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中
在最左边,这就是 完全二叉树。 我们知道二叉树可以用数组模拟,堆自然也可以。
现在让我们来画一棵完全二叉树:
从图中可以看出,元素的父亲节点数组下标是本身的1/2(只取整数部分),所以我们很容易去模拟 ,也很
容易证明其所有操作都为 log级别 ~~
堆还分为两种类型:大根堆 、小根堆
顾名思义,就是保证根节点 是所有数据中最大 / 小, 并且尽力让小的节点在上方
不过有一点需要注意:堆内的元素并不一定数组下标顺序来排序的!! 很多的初学者会错误的认为大/小根堆中
下标为1就是 第一大/小,2是第二大/小……
原因会在后面解释,现在你只需要深深地记住这一点!
我们刚刚画的完全二叉树中并没有任何元素,现在让我们加入一组数据吧!
下标从1到9分别加入:{8,5,2,10,3,7,1,4,6}。
如下图所示
(不要问我怎么加,想想你是怎么读入数组的。)
我们可以发现这组数据是杂乱无章 的,我们该如何去维护 呢?
现在我就来介绍一下堆的几个基本操作:
上浮 shift_up; 下沉 shift_down 插入 push 弹出 pop 取顶 top 堆排序 heap_sort
学习C/C++的同学有福利了,堆的代码一般十分之长 ,而我们伟大的STL模板库给我们提供了两种简单方便 堆操作的方式,
想学习的可以看看这个:http://www.cnblogs.com/helloworld-c/p/4854463.html 密码: abcd111
我个人建议吧,起码知道一下实现的过程,STL只能是锦上添花,绝不可以雪中送炭!!
万一哪天要你模拟堆的某一操作过程,而你只知道 STL 却不知道原理,看不出这个题目是堆,事后和其他OIer
讨论出题解, 那岂不是砍舌头吃苦瓜,哭得笑哈哈。
那么我们开始讲解操作过程吧, 我们以小根堆为例
刚刚那组未处理过的数据中我们很容易就能看出,根节点 1 元素 8绝对不是最小的
我们很容易发现它的一个儿子节点 3( 元素 2) 比它来的小,我们怎么将它放到最高点 呢?很简单,直接交换 嘛~~
但是,我们又发现了,3的一个儿子节点 7( 元素 1) 似乎更适合在根节点。
这时候我们是无法直接 和根节点交换的,那我们就需要一个操作来实现这个交换过程,那就是上浮 shift_up 。
操作过程如下:
从当前结点开始,和它的父亲节点比较,若是比父亲节点来的小,就交换,
然后 将当前询问的节点下标更新为原父亲节点下标;否则退出。
模拟操作图示:
伪代码如下:
Shift_up( i )
{
while( i / 2 >= 1)
{
if( 堆数组名[ i ] < 堆数组名[ i/2 ] )
{
swap( 堆数组名[ i ] , 堆数组名[ i/2 ]) ;
i = i / 2;
}
else break;
}
这一次上浮完毕之后呢,我们又发现了一个问题,貌似节点 3( 元素 8) 不太合适放在那 ,而它的子节点 7( 元素 2)
好像才应该在那个位置。
此时的你应该会说 : “赐予我力量,让节点 7 上浮吧,我是 OIer !”
然而,上帝(我很不要脸的说是我)赐予你另外一种力量,让节点 3 下沉!
那么问题来了:节点 3 应该往哪下沉呢?
我们知道,小根堆是尽力要让小的元素在较上方的节点,而下沉与上浮一样要以交换来不断操作,所以我们应该
让节点 7与其交换。
由此我们可以得出下沉的算法了:
让当前结点的左右儿子 ( 如果有的话 ) 作比较,哪个比较小就和它交换,
并更新 询问节点的下标为被交换的儿子节点下标,否则退出。
模拟操作图示:
伪代码如下:
Shift_down( i , n ) //n表示当前有n个节点
{
while( i * 2 <= n)
{
T = i * 2 ;
if( T + 1 <= n && 堆数组名[ T + 1 ] < 堆数组名[ T ])
T++;
if( 堆数组名[ i ] < 堆数组名[ T ] )
{
swap( 堆数组名[ i ] , 堆数组名[ T ] );
i = T;
}
else break;
}
讲完了上浮和下沉,接下来就是插入 操作了~~~~
我们前面用的插入是直接插入,所以数据才会杂乱无章,那么我们如何在插入的时候边维护堆 呢?
其实很简单,每次插入的时候呢,我们都往最后一个插入,让后使它上浮。
(这个不需要图示了吧…)
伪代码如下:
Push ( x )
{
n++;
堆数组名[ n ] = x;
Shift_up( n );
}
咳咳,说完了插入,我们总需要会弹出 吧~~~~~
弹出,顾名思义就是把顶元素弹掉 ,但是,弹掉以后不是群龙无首 吗??
我们如何去维护这堆数据呢?
稍加思考,我们不难得出一个十分巧妙的算法:
让根节点元素和尾节点进行交换,然后让现在的根元素下沉就可以了!
(这个也不需要图示吧…)
伪代码如下:
Pop ( x )
{
swap( 堆数组名[1] , 堆数组名[ n ] );
n--;
Shift_down( 1 );
}
接下来是取顶 …..我想不需要说什么了吧,根节点数组下标必定是1,返回堆[ 1 ]就OK了~~
注意:每次取顶要判断堆内是否有元素,否则..你懂的
图示和伪代码省略,如果你这都不会那你可以重新开始学信息学了,当然如果你是小白….这种稍微高级的数据
结构还是以后再说吧。
说完这些,我们再来说说堆排序。之前说过堆是无法以数组下标的顺序来来排序的对吧?
所以我个人认为呢,并不存在堆排序这样的操作,即便网上有很多堆排序的算法,但是我这里有个更加方便的算法:
开一个新的数组,每次取堆顶元素放进去,然后弹掉堆顶就OK了~
伪代码如下:
Heap_sort( a[] )
{
k=0;
while( size > 0 )
{
k++;
a[ k ] = top();
pop();
}
}
堆排序的时间复杂度是O(nlogn) 理论上是十分稳定的,但是对于我们来说并没有什么卵用。
我们要排序的话,直接使用快排 即可,时间更快,用堆排还需要O(2*n) 的空间 。这也是为什么我说堆的操作
时间复杂度在O(1)~O(logn)。
讲完到这里,堆也基本介绍完了,那么它有什么用 呢??
举个粒子,比如当我们每次 都要取某一些元素的最小值 ,而取出来操作后要再放回去 ,重复做这样的事情。
我们若是用快排 的话,最坏的情况 需要O(q*n^2) ,而若是堆,仅需要 O(q*logn) ,时间复杂度瞬间低了不少。
还有一种最短路算法——Dijkstra ,需要用到堆来优化,这个算法我后面会找个时间介绍给大家。
最后附上我写的一份堆操作的代码(C++):
1 #include<cstdio>
2 #include<cstring>
3 #include<iostream>
4 #include<algorithm>
5 #define maxn 100010 //这部分可以自己定义堆内存多少个元素
6 using namespace std;
7 struct Heap
8 {
9 int size,queue[maxn];
10 Heap() //初始化
11 {
12 size=0;
13 for(int i=0;i<maxn;i++)
14 queue[i]=0;
15 }
16 void shift_up(int i) //上浮
17 {
18 while(i>1)
19 {
20 if(queue[i]<queue[i>>1])
21 {
22 int temp=queue[i];
23 queue[i]=queue[i>>1];
24 queue[i>>1]=temp;
25 }
26 i>>=1;
27 }
28 }
29 void shift_down(int i) //下沉
30 {
31 while((i<<1)<=size)
32 {
33 int next=i<<1;
34 if(next<size && queue[next+1]<queue[next])
35 next++;
36 if(queue[i]>queue[next])
37 {
38 int temp=queue[i];
39 queue[i]=queue[next];
40 queue[next]=temp;
41 i=next;
42 }
43 else return ;
44 }
45 }
46 void push(int x) //加入元素
47 {
48 queue[++size]=x;
49 shift_up(size);
50 }
51 void pop() //弹出操作
52 {
53 int temp=queue[1];
54 queue[1]=queue[size];
55 queue[size]=temp;
56 size--;
57 shift_down(1);
58 }
59 int top(){return queue[1];}
60 bool empty(){return size;}
61 void heap_sort() //另一种堆排方式,由于难以证明其正确性
62 { //我就没有在博客里介绍了,可以自己测试
63 int m=size;
64 for(int i=1;i<=size;i++)
65 {
66 int temp=queue[m];
67 queue[m]=queue[i];
68 queue[i]=temp;
69 m--;
70 shift_down(i);
71 }
72 }
73 };
74 int main()
75 {
76 Heap Q;
77 int n,a,i,j,k;
78 cin>>n;
79 for(i=1;i<=n;i++)
80 {
81 cin>>a;
82 Q.push(a); //放入堆内
83 }
84
85 for(i=1;i<=n;i++)
86 {
87 cout<<Q.top()<<" "; //输出堆顶元素
88 Q.pop(); //弹出堆顶元素
89 }
90 return 0;
91 }
推荐一道堆的基本操作的题目:
CODEVS 1063 合并果子 :http://codevs.cn/problem/1063/