风向玫瑰花状图、风向雷达图

本文讨论了如何在风向数据不全时,利用雷达图进行美观且直观的风向表示,介绍了Origin中的二维雷达图制作方法,以及如何通过颜色和面积区分不同指标。同时提及了在线作图平台如PlotDB进行多因子叠加雷达图的实践应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

很多时候我们在分析风向的时候由于缺乏全面的风向数据,例如下图有360度或者N-NE-NNE-E等16个方向的风向数据可以做出比较完善好看的风向玫瑰花状图。

               

当你有的只是几个方向的风向数据。这种情况下要想做出合适的表征风向的图件,用柱状图又觉得不够美观和高端的时候则可以考虑使用对风向数据要求比较小的风向雷达图,其中最简单的操作就是利用Origin中二维作图里的雷达图来进行绘制,只需要风向和天数两列数据便可得到已有数据生成的风向或者其他数据的雷达图,对于同一横坐标下的不同指标则可以用不同的颜色和面积来表征,同时在雷达图上面积最饱满的指标则是影响因子或者占比最大的指标。如下图可作为参考。另外,在很多在线作图网站(PlotDB)等都可以做多因子叠加的雷达图。

### 雷达的实现方法 雷达是一种多变量数据分析表,通常用于展示多个维度的数据特征。以下是几种常见的编程语言及其对应的库来绘制雷达。 #### Python 实现雷达 Python 中可以使用 `matplotlib` 或者 `plotly` 库轻松创建雷达。以下是一个基于 `matplotlib` 的简单示例: ```python import numpy as np import matplotlib.pyplot as plt def radar_plot(data, labels): angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist() data += data[:1] # Close the loop angles += angles[:1] fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True)) ax.plot(angles, data, color='orange', linewidth=2, linestyle='solid') ax.fill(angles, data, color='orange', alpha=0.25) ax.set_theta_offsets(np.pi / 2) ax.set_theta_direction(-1) plt.xticks(angles[:-1], labels) ax.set_rlabel_position(30) plt.yticks([10, 20, 30], ["10", "20", "30"], color="grey", size=7) plt.ylim(0, 40) if __name__ == "__main__": sample_data = [15, 30, 10, 25, 20] sample_labels = ['A', 'B', 'C', 'D', 'E'] radar_plot(sample_data, sample_labels) plt.show() ``` 上述代码展示了如何通过极坐标系构建一个简单的雷达[^1]。 #### JavaScript 实现雷达 JavaScript 可以借助 `Chart.js` 这样的可视化库快速生成交互式的雷达。下面是一段基本的例子: ```javascript const ctx = document.getElementById('myRadar').getContext('2d'); const myRadarChart = new Chart(ctx, { type: 'radar', data: { labels: ['A', 'B', 'C', 'D', 'E'], datasets: [{ label: 'Sample Data', data: [15, 30, 10, 25, 20], backgroundColor: 'rgba(255, 99, 132, 0.2)', borderColor: 'rgb(255, 99, 132)', borderWidth: 1, pointBackgroundColor: 'rgb(255, 99, 132)' }] }, options: { responsive: true, maintainAspectRatio: false } }); ``` 此代码片段利用了 HTML5 Canvas 和 Chart.js 来渲染动态雷达[^2]。 #### 使用深度学习框架生成复杂形 如果希望结合机器学习模型自动生成复杂的雷达数据集,则可参考 GitHub 上由 Siraj Raval 提供的相关资源[^3]。这些资料可能涉及神经网络预测或者优化算法生成特定模式下的数值分布。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值