本节的核心是将常系数微分方程转化为线性代数问题。
d u d t = λ u 的 解 为 u ( t ) = C e λ t \frac{du}{dt}=\lambda u \quad 的解为 \quad u(t) = Ce^{\lambda t} dtdu=λu的解为u(t)=Ceλt
代入 t = 0 t=0 t=0,可得 u ( 0 ) = C u(0) = C u(0)=C,因此有 u ( t ) = u ( 0 ) e λ t u(t) = u(0)e^{\lambda t} u(t)=u(0)eλt。这是只有一个变量的情况,在线性代数里,我们扩展到 n n n 个方程的情况。
d u d t = A u 初 始 条 件 为 向 量 u ( 0 ) t = 0 \frac{d\boldsymbol u}{dt}=A \boldsymbol u \quad 初始条件为向量 \quad \boldsymbol u(0)_{t=0} dtdu=Au初始条件为向量u(0)t=0
注意,这里 A A A 是常矩阵,不随时间而改变。而且这些方程是线性的,如果 u ( t ) \boldsymbol u(t) u(t) 和 v ( t ) \boldsymbol v(t) v(t) 都是方程组的解,那么它们的线性组合 C u ( t ) + D v ( t ) C\boldsymbol u(t)+D\boldsymbol v(t) Cu(t)+Dv(t) 也是解,我们需要 n n n 个这样的常数来匹配方程组的初始条件。
1. d u d t = A u \frac{d\boldsymbol u}{dt}=A \boldsymbol u dtdu=Au 的解
其中一个解是 e λ t x e^{\lambda t} \boldsymbol x eλtx, λ \lambda λ 是矩阵 A A A 的特征值,而 x \boldsymbol x x 是特征向量。将这个解代入原方程,利用 A x = λ x A\boldsymbol x=\lambda \boldsymbol x Ax=λx 可得
d u d t = λ e λ t x = A e λ t x = A u \frac{d\boldsymbol u}{dt} = \lambda e^{\lambda t} \boldsymbol x = A e^{\lambda t} \boldsymbol x=A \boldsymbol u dtdu=λeλtx=Aeλtx=Au
这个解的所有部分都有 e λ t e^{\lambda t} eλt,当 λ > 0 \lambda>0 λ>0 时,解会增长;当 λ < 0 \lambda<0 λ<0 时,解会衰减。而当 λ \lambda λ 为虚数时,则它的实部决定解是增长还是衰减。
- 例 1
求解 d u d t = A u = [ 0 1 1 0 ] u , u 0 = [ 4 2 ] \frac{d\boldsymbol u}{dt}=A \boldsymbol u = \begin{bmatrix}0&1 \\ 1&0\end{bmatrix}\boldsymbol u,\boldsymbol u_0 = \begin{bmatrix}4 \\ 2\end{bmatrix} dtdu=Au=[0110]u,u0=[42]。
矩阵 A A A 的特征值为 1 和 -1,特征向量为 (1, 1) 和 (1, -1),因此两个纯指数解为:
u 1 ( t ) = e λ 1 t x 1 = e t [ 1 1 ] \boldsymbol u_1(t) = e^{\lambda_1 t} \boldsymbol x_1 = e^t\begin{bmatrix}1 \\ 1\end{bmatrix} u1(t)=eλ1tx1=et[11]
u 2 ( t ) = e λ 2 t x 2 = e − t [ 1 − 1 ] \boldsymbol u_2(t) = e^{\lambda_2 t} \boldsymbol x_2 = e^{-t}\begin{bmatrix}1 \\ -1\end{bmatrix} u2(t)=eλ2tx2=e−t[1−1]
这些 u \boldsymbol u u 依然是矩阵的特征向量,它们满足 A u 1 = u 1 A\boldsymbol u_1 = \boldsymbol u_1 Au1=u1 和 A u 2 = − u 2 A\boldsymbol u_2 = -\boldsymbol u_2 Au2=−u2,只不过是系数随着 t t t 改变罢了。方程组的全解为这些特解的线性组合。
利用初始条件我们可以确定出系数 C C C 和 D D D。
因此,我们可以通过以下三个步骤来求解 d u d t = A u \frac{d\boldsymbol u}{dt}=A \boldsymbol u dtdu=Au。
- 将 u 0 \boldsymbol u_0 u0 写成特征向量的线性组合, u 0 = c 1 x 1 + ⋯ + c n x n \boldsymbol u_0 = c_1 \boldsymbol x_1+\cdots+c_n \boldsymbol x_n u0=c1x1+⋯+cnxn;
- 将每个特征向量 x i \boldsymbol x_i xi 乘以 e λ i t e^{\lambda_i t} eλit;
- 全解就是 e λ t x e^{\lambda t}\boldsymbol x eλtx 的线性组合, u ( t ) = c 1 e λ 1 t x 1 + ⋯ + c n e λ n t x n \boldsymbol u(t) = c_1 e^{\lambda_1 t}\boldsymbol x_1+\cdots+c_ne^{\lambda_n t} \boldsymbol x_n u(t)=c1eλ1tx1+⋯+cneλntxn。
注意,如果两个特征值相同而只有一个对应的特征向量,那么我们就需要另外一个解 t e λ t x te^{\lambda t}\boldsymbol x teλtx。
- 例 2
2. 二阶方程组
针对二阶方程 m y ′ ′ + b y ′ + k y = 0 my''+by'+ky=0 my′′+by′+ky=0,我们将之转化为矩阵形式,假设 m = 1 m=1 m=1。
因此,我们需要先求解出矩阵的特征值和特征向量。
3. 2×2 矩阵的稳定性
针对方程组的解,我们想知道随着 t → ∞ t \to \infty t→∞,解是否趋向于 u = 0 \boldsymbol u = 0 u=0,也就是问题是否是稳定的。这取决于矩阵的特征值。
全解是由 e λ t x e^{\lambda t}\boldsymbol x eλtx 构建出来的。如果特征值 λ \lambda λ 是实数,只有当 λ < 0 \lambda<0 λ<0 时,解才会趋向 0。如果特征值 λ \lambda λ 是复数,那么有 λ = r + i s \lambda=r+is λ=r+is,那么其实部必须小于零。
对 2×2 矩阵 [ a b c d ] \begin{bmatrix}a&b \\ c&d\end{bmatrix} [acbd] 来说,如果其两个特征值满足上面的两个条件,则一定有:
λ 1 + λ 2 < 0 → 矩 阵 的 迹 T = a + d < 0 \lambda_1 + \lambda_2 < 0 \to 矩阵的迹 \quad T = a + d < 0 λ1+λ2<0→矩阵的迹T=a+d<0
λ 1 λ 2 > 0 → 矩 阵 的 行 列 式 D = a d − b c > 0 \lambda_1 \lambda_2 > 0 \to 矩阵的行列式 \quad D = ad - bc > 0 λ1λ2>0→矩阵的行列式D=ad−bc>0
4. 矩阵的指数次方
最后,我们想将方程组的解写成一个新的形式 u ( t ) = e A t u 0 \boldsymbol u(t) =e^{At}\boldsymbol u_0 u(t)=eAtu0。
e x = 1 + x + 1 2 x 2 + 1 6 x 3 + ⋯ e^x = 1 + x+\frac{1}{2}x^2+\frac{1}{6}x^3 + \cdots ex=1+x+21x2+61x3+⋯
我们将 x x x 换成矩阵,可得:
e A t = I + A t + 1 2 ( A t ) 2 + 1 6 ( A t ) 3 + ⋯ e^{At} = I + At+\frac{1}{2}(At)^2+\frac{1}{6}(At)^3 + \cdots eAt=I+At+21(At)2+61(At)3+⋯
它的导数为 A e A t Ae^{At} AeAt:
A + A 2 t + 1 2 A 3 t 2 + 1 6 A 4 t 3 + ⋯ = A e A t A + A^2t+\frac{1}{2}A^3t^2+\frac{1}{6}A^4t^3 + \cdots =Ae^{At} A+A2t+21A3t2+61A4t3+⋯=AeAt
它的特征值是 e λ t e^{\lambda t} eλt:
( I + A t + 1 2 ( A t ) 2 + 1 6 ( A t ) 3 + ⋯   ) x = ( 1 + λ t + 1 2 ( λ t ) 2 + 1 6 ( λ t ) 3 + ⋯   ) x (I + At+\frac{1}{2}(At)^2+\frac{1}{6}(At)^3 + \cdots)x = (1+\lambda t + \frac{1}{2}(\lambda t)^2+\frac{1}{6}(\lambda t)^3 + \cdots)x (I+At+21(At)2+61(At)3+⋯)x=(1+λt+21(λt)2+61(λt)3+⋯)x
假设 A A A 有 n n n 个线性不相关的特征向量,将 A = S Λ S − 1 A=S\Lambda S^{-1} A=SΛS−1 代入 e A t e^{At} eAt 可得:
e A t = I + A t + 1 2 ( A t ) 2 + 1 6 ( A t ) 3 + ⋯ e^{At} = I + At+\frac{1}{2}(At)^2+\frac{1}{6}(At)^3 + \cdots eAt=I+At+21(At)2+61(At)3+⋯
= I + S Λ S − 1 t + 1 2 ( S Λ S − 1 t ) ( S Λ S − 1 t ) + ⋯ = I + S\Lambda S^{-1}t+\frac{1}{2}(S\Lambda S^{-1}t)(S\Lambda S^{-1}t)+ \cdots =I+SΛS−1t+21(SΛS−1t)(SΛS−1t)+⋯
将 S S S 和 S − 1 S^{-1} S−1 提取出来有
= S ( I + Λ t + 1 2 ( Λ t ) 2 + ⋯   ) S − 1 = S e Λ t S − 1 = S(I + \Lambda t+\frac{1}{2}(\Lambda t)^2+\cdots)S^{-1} = Se^{\Lambda t}S^{-1} =S(I+Λt+21(Λt)2+⋯)S−1=SeΛtS−1
这和之前解的形式是一模一样的!
- 例 3
e A t e^{At} eAt 满足下面三个规则:
-
e A t e^{At} eAt 总有逆矩阵 e − A t e^{-At} e−At;
-
e A t e^{At} eAt 的特征值总是 e λ t e^{\lambda t} eλt;
-
如果 A A A 是反对称矩阵,即 A T = − A A^T=-A AT=−A,那么 e − A t e^{-At} e−At 是一个正交矩阵,转置等于逆。
-
例 4
获取更多精彩,请关注「seniusen」!