计算 expAt 的一种方法

本文介绍了利用Cayley-Hamilton定理和Taylor级数求解矩阵指数函数expAt的方法,特别讨论了阶数不超过3的矩阵。通过构造特殊多项式确定满足条件的r(λ),进而计算出expAt的表达式,避免了特征向量的计算,简化了过程。
摘要由CSDN通过智能技术生成

计算 exp ⁡ A t \exp At expAt 的一种方法

为了简单, 这里只讨论阶数不高于 3 的矩阵。

1 阶没什么好说的, 是吧? 我们先介绍一个引理。

引理 (Cayley-Hamilton) f ( λ ) f(\lambda) f(λ) n n n 阶方阵 A A A 的特征多项式 det ⁡ ( λ E − A ) \det(\lambda E-A) det(λEA), 那么 f ( A ) = O f(A)=O f(A)=O, 其中 O O O 是零矩阵, E E E 是单位矩阵。

λ E − A \lambda E-A λEA 的伴随矩阵为 B ( λ ) B(\lambda) B(λ), 从而 ( λ E − A ) B ( λ ) = f ( λ ) E (\lambda E-A)B(\lambda)=f(\lambda)E (λEA)B(λ)=f(λ)E B ( λ ) B(\lambda) B(λ) 的每个元素都是次数低于 n n n 的多项式, 所以存在 n n n 个元素全为数字的矩阵 B 0 , B 1 , ⋯   , B n − 1 B_0,B_1,\cdots,B_{n-1} B0,B1,,Bn1 使得
B ( λ ) = B 0 λ n − 1 + B 1 λ n − 2 + ⋯ + B n − 1 B(\lambda)=B_0{\lambda}^{n-1}+B_1{\lambda}^{n-2}+\cdots+B_{n-1} B(λ)=B0λn1+B1λn2++Bn1

f ( λ ) = λ n + a 1 λ n − 1 + ⋯ + a n f(\lambda)={\lambda}^{n}+a_1{\lambda}^{n-1}+\cdots+a_n f(λ)=λn+a1λn1++an
那么
( λ E − A ) ( B 0 λ n − 1 + B 1 λ n − 2 + ⋯ + B n − 1 ) = λ n E + a 1 λ n − 1 E + ⋯ + a n E (\lambda E-A)(B_0{\lambda}^{n-1}+B_1{\lambda}^{n-2}+\cdots+B_{n-1})={\lambda}^{n}E+a_1{\lambda}^{n-1}E+\cdots+a_nE (λEA)(B0λn1+B1λn2++Bn1)=λnE+a1λn1E++anE
展开, 得
{ E B 0 = E E B 1 − A B 0 = a 1 E E B 2 − A B 1 = a 2 E ⋯ E B n − 2 − A B n − 2 = a n − 1 E − A B n − 1 = a n E \begin{cases} EB_0=E\\ EB_1-AB_0=a_1E\\ EB_2-AB_1=a_2E\\ \cdots\\ EB_{n-2}-AB_{n-2}=a_{n-1}E\\ -AB_{n-1}=a_nE \end{cases} EB0=EEB1AB0=a1EEB2AB1=a2EEBn2ABn2=an1EABn1=anE
如果我们给第 i i i ( i = 0 , 1 , ⋯   , n ) (i=0,1,\cdots,n) (i=0,1,,n) 式子 ( E B 0 = E EB_0=E EB0=E 是第 0 个, E B 1 − A B 0 = a 1 E EB_1-AB_0=a_1E EB1AB0=a1E 是第 1 个, 等等) 左乘矩阵 A n − i A^{n-i} Ani, 那么
{ A n B 0 = A n A n − 1 B 1 − A n B 0 = a 1 A n − 1 A n − 2 B 2 − A n − 1 B 1 = a 2 A n − 2 ⋯ A B n − 1 − A 2 B n − 2 = a n − 1 A − A B n − 1 = a n E \begin{cases} A^nB_0=A^n\\ A^{n-1}B_1-A^nB_0=a_1A^{n-1}\\ A^{n-2}B_2-A^{n-1}B_1=a_2A^{n-2}\\ \cdots\\ AB_{n-1}-A^2B_{n-2}=a_{n-1}A\\ -AB_{n-1}=a_nE \end{cases} AnB0=AnAn1B1AnB0=a1An1An2B2An1B1=a2An2ABn1A2Bn2=an1AABn1=anE
左边相加为 O O O, 右边相加恰好为 f ( A ) f(A) f(A)。证毕。

定义多项式序列
ϵ m ( λ ) = { λ m m ! , m > 0 1 , m = 0 0 , m < 0 {\epsilon}_m(\lambda)=\begin{cases} \frac{ {\lambda}^m}{m!},&m>0\\ 1,&m=0\\ 0,&m<0 \end{cases} ϵm(λ)=m!λm,1,0,m>0m=0m<0
不难验证
ϵ m ′ ( λ ) = ϵ m − 1 ( λ ) , ϵ m ( λ t ) = ϵ m ( λ ) t m {\epsilon}_m'(\lambda)={\epsilon}_{m-1}(\lambda),\qquad {\epsilon}_m(\lambda t)={\epsilon}_m(\lambda)t^m ϵm(λ)=ϵm1(λ),ϵm(λt)=ϵm(λ)tm
所以 exp ⁡ A t \exp At expAt 就是
exp ⁡ A t = ∑ m ≥ 0 ϵ m ( A t ) = ∑ m ≥ 0 ϵ m ( A ) t m \exp At=\sum_{m\geq0} {\epsilon}_m(At)=\sum_{m\geq0} {\epsilon}_m(A)t^m expAt=m0ϵm(At)=

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值