poj 3734 Blocks 组合计数

题意:

给长度为n的串,串中每位可用0,1,2,3,求0的个数和1的个数都为偶数的串数。

思路:

组合计数,4^n=(2+1+1)^4,ans=sum[i=0...n](c(n,i)2^i*sum[k=n-i且为偶数,t=0,2,...k](c(k,t) );最后推出4^(n-1)+2^(n-1)。

代码:

//poj 3734
//sep9
#include <iostream>
using namespace std;
const int mod=10007;

int pow(int a,int b)
{
	int ans=1,p=a;
	while(b){
		if(b%2==1)
			ans=(ans*p)%mod;
		b=b/2;
		p=(p*p)%mod;
	}	
	return ans;	
}

int main()
{
	int t;
	scanf("%d",&t);
	while(t--){
		int n;
		scanf("%d",&n);
		printf("%d\n",(pow(4,n-1)+pow(2,n-1))%mod);	
	}
	return 0;	
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值