题意:
给一图,求从点1到n的t条边不相交的路径,目标是最小化最t条路径中的最大边,输出该最大边。
分析:
求最值的问题满足单调性都可以用二分来做,二分是加速的枚举方法。这题二分枚举最大边建图,每次用长度小于等于二分值的边建图并置容量为1,求最大流即可。
代码:
//poj 2455
//sep9
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
const int maxN=256;
const int maxM=40012;
struct Edge
{
int v,f,nxt;
}e[maxM*2+10];
queue<int> que;
int src,sink;
int g[maxN+10];
int nume;
bool vis[maxN+10];
int dist[maxN+10];
int n,p,t;
int a[maxM],b[maxM],c[maxM];
void addedge(int u,int v,int c)
{
e[++nume].v=v;e[nume].f=c;e[nume].nxt=g[u];g[u]=nume;
e[++nume].v=u;e[nume].f=c;e[nume].nxt=g[v];g[v]=nume;
}
void init()
{
memset(g,0,sizeof(g));
nume=1;
}
int bfs()
{
while(!que.empty()) que.pop();
memset(dist,0,sizeof(dist));
memset(vis,0,sizeof(vis));
vis[src]=true;
que.push(src);
while(!que.empty()){
int u=que.front();que.pop();
for(int i=g[u];i;i=e[i].nxt)
if(e[i].f&&!vis[e[i].v]){
que.push(e[i].v);
dist[e[i].v]=dist[u]+1;
vis[e[i].v]=true;
if(e[i].v==sink)
return 1;
}
}
return 0;
}
int dfs(int u,int delta)
{
if(u==sink)
return delta;
int ret=0;
for(int i=g[u];ret<delta&&i;i=e[i].nxt)
if(e[i].f&&dist[e[i].v]==dist[u]+1){
int dd=dfs(e[i].v,min(e[i].f,delta-ret));
if(dd>0){
e[i].f-=dd;
e[i^1].f+=dd;
ret+=dd;
}
else
dist[e[i].v]=-1;
}
return ret;
}
int dinic()
{
int ret=0;
while(bfs()==1)
ret+=dfs(src,INT_MAX);
return ret;
}
bool check(int mid)
{
init();
src=0,sink=n+1;
for(int i=0;i<p;++i)
if(c[i]<=mid)
addedge(a[i],b[i],1);
addedge(src,1,t);
addedge(n,sink,t);
if(dinic()==t)
return true;
return false;
}
int main()
{
scanf("%d%d%d",&n,&p,&t);
int maxl=-1;
for(int i=0;i<p;++i){
scanf("%d%d%d",&a[i],&b[i],&c[i]);
maxl=max(maxl,c[i]);
}
int l=0,r=maxl+1,ans;
while(l<r){
int mid=(l+r)/2;
if(check(mid))
r=mid,ans=mid;
else
l=mid+1;
}
printf("%d",ans);
return 0;
}