题意:
在平面上给若干矩形,求它们的周长并。
分析:
用区间树维护x轴上区间的一些覆盖属性。区间树维护的是一些区间的性质,构造为build(l,mid),build(mid,r),线段树维护的是一些点的性质,构造为build(l,mid),build(mid+1,r)。区间树经常被视为线段树,但个人认为因为点线有所区分,故考虑问题时还是把他们区别对待比较好,虽然它们的核心思想如lazy是一样的。
代码:
//poj 1177
//sep9
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN=10012;
int n;
struct LINE
{
int y,x1,x2;
int f;
}line[MAXN];
struct Node
{
int l,r;
int cnt;//lenth
int lf,rf;//actual left/right endpoint
int numseg;//branch number
int c;//cover
bool lcover,rcover;
}segTree[MAXN*4];
int x[MAXN];
bool cmp(LINE a,LINE b)
{
return a.y<b.y;
}
void build(int i,int l,int r)
{
segTree[i].l=l;
segTree[i].r=r;
segTree[i].lf=x[l];
segTree[i].rf=x[r];
segTree[i].cnt=0;
segTree[i].numseg=0;
segTree[i].c=0;
segTree[i].lcover=segTree[i].rcover=false;
if(l+1==r) return ;
int mid=(l+r)/2;
build(2*i,l,mid);
build(2*i+1,mid,r);
}
void pushUp(int i)
{
if(segTree[i].c>0){
segTree[i].cnt=segTree[i].rf-segTree[i].lf;
segTree[i].numseg=1;
segTree[i].lcover=segTree[i].rcover=true;
return;
}
if(segTree[i].l+1==segTree[i].r){
segTree[i].cnt=0;
segTree[i].numseg=0;
segTree[i].lcover=segTree[i].rcover=false;
}else{
segTree[i].cnt=segTree[i*2].cnt+segTree[i*2+1].cnt;
segTree[i].lcover=segTree[i*2].lcover;
segTree[i].rcover=segTree[i*2+1].rcover;
segTree[i].numseg=segTree[i*2].numseg+segTree[i*2+1].numseg;
if(segTree[i*2].rcover&&segTree[i*2+1].lcover) --segTree[i].numseg;
}
}
void update(int i,LINE e)
{
if(segTree[i].lf==e.x1&&segTree[i].rf==e.x2){
segTree[i].c+=e.f;
pushUp(i);
return ;
}
if(e.x2<=segTree[i*2].rf) update(i*2,e);
else if(e.x1>=segTree[i*2+1].lf) update(i*2+1,e);
else{
LINE tmp=e;
tmp.x2=segTree[i*2].rf;
update(i*2,tmp);
tmp=e;
tmp.x1=segTree[i*2+1].lf;
update(i*2+1,tmp);
}
pushUp(i);
}
int main()
{
scanf("%d",&n);
int t=0;
for(int i=0;i<n;++i){
int x1,y1,x2,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
line[t].x1=x1,line[t].x2=x2,line[t].y=y1,line[t].f=1;
x[t++]=x1;
line[t].x1=x1,line[t].x2=x2,line[t].y=y2,line[t].f=-1;
x[t++]=x2;
}
sort(line,line+t,cmp);
sort(x,x+t);
int m=unique(x,x+t)-x;
build(1,0,m-1);
int ans=0,last=0;
line[t].y=line[t-1].y;
for(int i=0;i<t;++i){
update(1,line[i]);
ans+=segTree[1].numseg*2*(line[i+1].y-line[i].y);
ans+=abs(segTree[1].cnt-last);
last=segTree[1].cnt;
}
printf("%d",ans);
return 0;
}