poj 1177 区间树求矩形周长并

题意:

       在平面上给若干矩形,求它们的周长并。

分析:

       用区间树维护x轴上区间的一些覆盖属性。区间树维护的是一些区间的性质,构造为build(l,mid),build(mid,r),线段树维护的是一些点的性质,构造为build(l,mid),build(mid+1,r)。区间树经常被视为线段树,但个人认为因为点线有所区分,故考虑问题时还是把他们区别对待比较好,虽然它们的核心思想如lazy是一样的。

代码:

//poj 1177
//sep9
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN=10012;
int n;
struct LINE
{
	int y,x1,x2;
	int f;
}line[MAXN];
struct Node
{
	int l,r;
	int cnt;//lenth
	int lf,rf;//actual left/right endpoint
	int numseg;//branch number
	int c;//cover
	bool lcover,rcover;
}segTree[MAXN*4];
int x[MAXN];

bool cmp(LINE a,LINE b)
{
	return a.y<b.y;
}

void build(int i,int l,int r)
{
	segTree[i].l=l;
	segTree[i].r=r;	
	segTree[i].lf=x[l];
	segTree[i].rf=x[r];
	segTree[i].cnt=0;
	segTree[i].numseg=0;
	segTree[i].c=0;
	segTree[i].lcover=segTree[i].rcover=false;
	if(l+1==r) return ;
	int mid=(l+r)/2;
	build(2*i,l,mid);
	build(2*i+1,mid,r);
}

void pushUp(int i)
{
	if(segTree[i].c>0){
		segTree[i].cnt=segTree[i].rf-segTree[i].lf;
		segTree[i].numseg=1;
		segTree[i].lcover=segTree[i].rcover=true;
		return;
	}
	if(segTree[i].l+1==segTree[i].r){
		segTree[i].cnt=0;
		segTree[i].numseg=0;
		segTree[i].lcover=segTree[i].rcover=false;
	}else{
		segTree[i].cnt=segTree[i*2].cnt+segTree[i*2+1].cnt;
		segTree[i].lcover=segTree[i*2].lcover;
		segTree[i].rcover=segTree[i*2+1].rcover;
		segTree[i].numseg=segTree[i*2].numseg+segTree[i*2+1].numseg;
		if(segTree[i*2].rcover&&segTree[i*2+1].lcover) --segTree[i].numseg;
	}
}

void update(int i,LINE e)
{
	if(segTree[i].lf==e.x1&&segTree[i].rf==e.x2){
		segTree[i].c+=e.f;
		pushUp(i);
		return ;
	}
	if(e.x2<=segTree[i*2].rf) update(i*2,e);
	else if(e.x1>=segTree[i*2+1].lf) update(i*2+1,e);
	else{
		LINE tmp=e;
		tmp.x2=segTree[i*2].rf;
		update(i*2,tmp);
		tmp=e;
		tmp.x1=segTree[i*2+1].lf;
		update(i*2+1,tmp);
	}	
	pushUp(i);
}

int main()
{
	scanf("%d",&n);
	int t=0;
	for(int i=0;i<n;++i){
		int x1,y1,x2,y2;
		scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
		line[t].x1=x1,line[t].x2=x2,line[t].y=y1,line[t].f=1;
		x[t++]=x1;
		line[t].x1=x1,line[t].x2=x2,line[t].y=y2,line[t].f=-1;
		x[t++]=x2;
	}	
	sort(line,line+t,cmp);
	sort(x,x+t);
	int m=unique(x,x+t)-x;
	build(1,0,m-1);
	int ans=0,last=0;
	line[t].y=line[t-1].y;
	for(int i=0;i<t;++i){
		update(1,line[i]);
		ans+=segTree[1].numseg*2*(line[i+1].y-line[i].y);
		ans+=abs(segTree[1].cnt-last);
		last=segTree[1].cnt;
	}
	printf("%d",ans);
	return 0;	
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值