决策树(Decision Tree)原理及实现

 决策树(Decision Tree)原理及实现

一、算法简介

1.1 基本模型介绍

决策树是一类常见的机器学习方法,可以帮助我们解决分类与回归两类问题。模型可解释性强,模型符合人类思维方式,是经典的树形结构。分类决策数模型是一种描述对实例进行分类的树形结构。决策树由结点 (node) 和有向边 (directed edge) 组成。结点包含了一个根结点 (root node)、若干个内部结点 (internal node) 和若干个叶结点 (leaf node)。内部结点表示一个特征或属性,叶结点表示一个类别。
简单而言,决策树是一个多层if-else函数,对对象属性进行多层if-else判断,获取目标属性的类别。由于只使用if-else对特征属性进行判断,所以一般特征属性为离散值,即使为连续值也会先进行区间离散化,如可以采用二分法(bi-partition)。
  思考:选哪些特征属性参与决策树建模、哪些属性排在决策树的顶部,哪些排在底部,对属性的值该进行什么样的判断、样本属性的值缺失怎么办、如果输出不是分类而是数值能用么、对决策没有用或没有多大帮助的属性怎么办、什么时候使用决策树?
1.2 决策树特点

决策树优点   

     1)决策树易于理解和实现,人们在在学习过程中不需要使用者了解很多的背景知识,这同时是它的能够直接体现数据的特点,只要通过解释后都有能力去理解决策树所表达的意义。
  2)对于决策树,数据的准备往往是简单或者是不必要的,而且能够同时处理数据型和常规型属性,在相对短的时间内能够对大型数据源做出可行且效果良好的结果。
  3)易于通过静态测试来对模型进行评测,可以测定模型可信度;如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。

 决策树缺点   

       1)对连续性的字段比较难预测。
  2)对有时间顺序的数据,需要很多预处理的工作。
  3)当类别太多时,错误可能就会增加的比较快。
  4)一般的算法分类的时候,只是根据一个字段来分类。
二、算法分类和流程

2.1 算法分类

现有的关于决策树学习的主要思想主要包含以下 3 个研究成果:  

 由 Quinlan 在 1986 年提出的 ID3 算法   

由 Quinlan 在 1993 年提出的 C4.5 算法  

 由 Breiman 等人在 1984 年提出的 CART 算法

算法比较  

2.2 算法流程

其他见博客https://www.cnblogs.com/geo-will/p/9773621.html

二、实现

2.1基于sklearn的代码实现 

python的sklearn库也提供了决策树的模型-DecisionTreeClassifier,可以直接调用,使用方便。具体介绍参见官方文档

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#

lass sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort='deprecated', ccp_alpha=0.0)[source]

 实例:项目采用用决策树预测隐形眼镜类型,数据集下载地址:https://github.com/Jack-Cherish/Machine-Learning/blob/master/Decision%20Tree/classifierStorage.txt 

# -*- coding: UTF-8 -*-
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.externals.six import StringIO
from sklearn import tree
import pandas as pd
import numpy as np
import pydotplus

if __name__ == '__main__':
    with open('lenses.txt', 'r') as fr:                                        #加载文件
        lenses = [inst.strip().split('\t') for inst in fr.readlines()]        #处理文件
    lenses_target = []                                                        #提取每组数据的类别,保存在列表里
    for each in lenses:
        lenses_target.append(each[-1])
    print(lenses_target)

    lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']            #特征标签       
    lenses_list = []                                                        #保存lenses数据的临时列表
    lenses_dict = {}                                                        #保存lenses数据的字典,用于生成pandas
    for each_label in lensesLabels:                                            #提取信息,生成字典
        for each in lenses:
            lenses_list.append(each[lensesLabels.index(each_label)])
        lenses_dict[each_label] = lenses_list
        lenses_list = []
    # print(lenses_dict)                                                        #打印字典信息
    lenses_pd = pd.DataFrame(lenses_dict)                                    #生成pandas.DataFrame
    # print(lenses_pd)                                                        #打印pandas.DataFrame
    le = LabelEncoder()                                                        #创建LabelEncoder()对象,用于序列化           
    for col in lenses_pd.columns:                                            #序列化
        lenses_pd[col] = le.fit_transform(lenses_pd[col])
    # print(lenses_pd)                                                        #打印编码信息

    clf = tree.DecisionTreeClassifier(max_depth = 4)                        #创建DecisionTreeClassifier()类
    clf = clf.fit(lenses_pd.values.tolist(), lenses_target)                    #使用数据,构建决策树
    dot_data = StringIO()
    tree.export_graphviz(clf, out_file = dot_data,                            #绘制决策树
                        feature_names = lenses_pd.keys(),
                        class_names = clf.classes_,
                        filled=True, rounded=True,
                        special_characters=True)
    graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
    graph.write_pdf("tree.pdf")                                                #保存绘制好的决策树,以PDF的形式存储。

 2.2基于Python实现

2.2.1基于ID3算法,实现预测贷款用户是否具有偿还贷款的能力

可以参考https://blog.csdn.net/Big_Pai/article/details/89516630

2.2.2 CART算法实现

# -*- coding:utf-8 -*-
# Decision tree by cart决策树,cart算法,算法参考李航《统计学习方法》P71
#author:Tomator
 
 
import numpy as np
import math
from sklearn.model_selection import train_test_split
 
 
# 创建测试数据集
def createDataSet():
    dataSet = [[0, 0, 0, 0, 'no'],  # 数据集
               [0, 0, 0, 1, 'no'],
               [0, 1, 0, 1, 'yes'],
               [0, 1, 1, 0, 'yes'],
               [0, 0, 0, 0, 'no'],
               [1, 0, 0, 0, 'no'],
               [1, 0, 0, 1, 'no'],
               [1, 1, 1, 1, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [2, 0, 1, 2, 'yes'],
               [2, 0, 1, 1, 'yes'],
               [2, 1, 0, 1, 'yes'],
               [2, 1, 0, 2, 'yes'],
               [2, 0, 0, 0, 'no']]
    labels = ['年龄', '有工作', '有自己的房子', '信贷情况']  # 分类属性
    return dataSet, labels  # 返回数据集和分类属性
 
 
 
# 计算基尼指数
def cal_gini(data_vector):
    nums_data = len(data_vector)  # 数据集样本数
    counts_by_labels = {}  # 用来保存每个label下的样本数
    gini = 0      #基尼指数
    p_sum=0       #每个类别的样本数
 
    for vector in data_vector:
        if vector[-1] not in counts_by_labels:  # vector[-1]为label值
            counts_by_labels[vector[-1]] = 0
        counts_by_labels[vector[-1]] += 1  # 统计label出现的次数
    for key in counts_by_labels:
        p = float(counts_by_labels[key] / nums_data)  # 计算每个标签出现的概率
        p_sum+= p**2
    gini=1-p_sum               # 公式5.24
    return gini
 
# 返回类列表中出现次数最多的类标签
def max_class(label_list):
    count_label = {}
    for label in label_list:
        if label not in count_label:
            count_label[label] = 0
        count_label[label] += 1
    #     选择字典value最大的所对应的key值
    return max(count_label, key=count_label.get)
 
 
"""
根据每个特征划分数据集
data_vector
index_feature:特征的索引位置i
value:用来划分的特征取值
返回划分后的子数据及样本数,和子数据集(子数据集剔除了第i列特征)
"""
# 根据cart算法划分数据集,cart算法生成的是二叉数,因此分割之后也就只有两个子数据集。返回分割后的D1和D2数据集
def split_datatset_cart(data_vector, index_feature, value):
    split_set_yes = []   #判别为“是”的子数据集
    split_set_no=[]       #判别为“否”的子数据集
    for vector in data_vector:
        if vector[index_feature] == value:
            # 去掉第i列特征
            split_1 = vector[:index_feature]
            split_1.extend(vector[index_feature + 1:])
            split_set_yes.append(split_1)
        else:
            split_2 = vector[:index_feature]
            split_2.extend(vector[index_feature + 1:])
            split_set_no.append(split_2)
    #         分别输出D1和D2数据集以及对应的数据集样本数
    return len(split_set_yes),split_set_yes,len(split_set_no),split_set_no
 
 
# 选择最优分类特征
# 生成决策树的方法:cart算法
def choose_bestfeture_cart(data_vector):
    nums_data = len(data_vector)
    nums_feature = len(data_vector[0]) - 1  # 每个样本所包含的特征个数
    min_gini = float('inf')  # 表示最小的基尼指数
    best_index_feature = 0  # 表示最优特征的索引位置index
    best_split_point=None  #表示最优的切分点
    for i in range(nums_feature):  # 遍历所有的特征
        features_i_set = [vector[i] for vector in data_vector]  # 提取第i个特征中所包含的可能取值
        features_i_set = list(set(features_i_set))  # 对特征值去重
        feature_gini = 0  #每个特征中每个特征值所对应的基尼指数
        # 如果第i个特征向量包含的特征取值个数小于2,则只有一个切分点。参考P71例5.4
        if len(features_i_set)<=2:
            # 同时选取features_i_set中数值最大特征取值为切分点。当然选取最小取值也有一样的结果,这只是设定的一个规矩。
            # fea为切分点
            fea=max(features_i_set)
            # 根据切分点进行划分子数据集
            nums_di_yes, di_set_yes, nums_di_no, di_set_no = split_datatset_cart(data_vector, i, fea)  #
            p_di_yes = nums_di_yes / nums_data  # 计算|Di|/|D|
            gini_yes_di = cal_gini(di_set_yes)  # 计算yes子类的gini指数
            feature_gini += p_di_yes * gini_yes_di
            p_di_no = nums_di_no / nums_data
            gini_yes_no = cal_gini(di_set_no)     # 计算no子类的gini指数
            feature_gini += p_di_no * gini_yes_no
 
            # 选取最优的分类特征和最优切分点
            if feature_gini < min_gini:
                min_gini = feature_gini
                best_index_feature = i
                best_split_point = fea
        # 如果第i个特征向量包含的特征取值个数小于2,则有多个切分点
        else:
            for fea in features_i_set:  # 遍历第i个特征的所有vlaue
                nums_di_yes, di_set_yes,nums_di_no, di_set_no = split_datatset_cart(data_vector, i, fea)  #
                p_di_yes = nums_di_yes / nums_data  # 计算|Di|/|D|
                gini_yes_di = cal_gini(di_set_yes)  # 计算yes子类的gini指数
                feature_gini += p_di_yes * gini_yes_di
                p_di_no=nums_di_no/nums_data
                gini_yes_no=cal_gini(di_set_no)
                feature_gini += p_di_no*gini_yes_no
 
                # 选取最优的分类特征和最优切分点
                if feature_gini<min_gini:
                    min_gini=feature_gini
                    best_index_feature=i
                    best_split_point=fea
    # print(best_index_feature,best_split_point)
    return best_index_feature,best_split_point  # 返回最优分类特征的索引位置和最优切分点
 
 
# 决策树的生成
class Decision_tree(object):
    def __init__(self, data_vector, labels):
        # 数据集
        self.data_vector = data_vector
        # 特征标签
        self.labels = labels
        # 用于保存最优特征的索引信息,列表形式输出
        self.best_feature_index_list=[]
 
    # 生成决策树,返回决策树tree,字典形式
    def tree_main(self):
        tree = self.create_decision_tree(self.data_vector, self.labels)
        return tree
 
    """
    递归函数,用于生成每一个子树,并返回。
    《统计学习方法》CART算法
    data_vector:每一个待分类数据集
    labels:待分类特征标签 
    """
 
    def create_decision_tree(self,data_vector, labels):
        nums_label = [vector[-1] for vector in data_vector]
        # 如果数据集中所有实例属于同一个类,则停止划分。返回该类 标签。
        if len(set(nums_label)) == 1:
            return nums_label[0]
        # 如果特征集只有一类时,即已经遍历完了所有特征,则停止划分。返回出现次数最多的类标签
        if len(data_vector[0]) == 1:
            return max_class(nums_label)
        best_index_feature,best_split_point = choose_bestfeture_cart(data_vector)  # 选择最优特征
        # best_feature_index_list存放每一个最优分类特征的索引值和对应的切分点,以两者的元组形式存放。
        self.best_feature_index_list.append((best_index_feature,best_split_point))
        best_feature_label = labels[best_index_feature]  # 最优特征的标签
        myTree = {best_feature_label: {}}  # 子决策树,key为最优特征的标签,value为子决策树
        del (labels[best_index_feature])  # 删除已经使用过的最优特征标签
 
        # 规定左子树为A=a的样本,右子树为A!=a的样本,并规定右子树的标签为“-best_split_point”!!!这样可以便于在进行predict时方便分类。
        nums_di_yes, di_set_yes, nums_di_no, di_set_no = split_datatset_cart(data_vector,best_index_feature,best_split_point)
        # 左子树
        myTree[best_feature_label][best_split_point] = self.create_decision_tree(di_set_yes, labels)
        # 右子树
        myTree[best_feature_label][-best_split_point] = self.create_decision_tree(di_set_no, labels)
 
        return myTree
 
 
 
if __name__ == '__main__':
    dataSet, labels = createDataSet()
    # best_index,point_split=choose_bestfeture_cart(dataSet)
    # print(labels[best_index],point_split)
 
    # 划分训练集和测试集
    x_train, x_test = train_test_split(dataSet, test_size=0.3, random_state=0)
 
    #
    tree= Decision_tree(dataSet, labels)
    decision_tree=tree.tree_main()
    print(decision_tree)
    print(tree.best_feature_index_list)
    # test_vector=[2, 1, 0, 0]
 
    # 由于数据集
    # score=0
    # for test_vector in x_test:
    #     predict_result=tree.predict(decision_tree,test_vector)
    #     print(test_vector,predict_result)
    #     if predict_result == test_vector[-1]:
    #         score+=1
    # print("测试准确率:%f%%"%(score/len(x_test)*100))
 
 

 

  • 6
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值