玻尔兹曼机和受限玻尔兹曼机

本文介绍了玻尔兹曼机的起源、结构和在解决搜索及学习问题上的应用。讨论了不同类型的Boltzmann Machines,如高阶、条件和平均场Boltzmann Machines,并详细阐述了受限玻尔兹曼机(RBM)的概念。此外,还探讨了Boltzmann Machines与其他模型的联系以及在学习过程中遇到的挑战和解决策略。
摘要由CSDN通过智能技术生成

Boltzmann Machines起源

在上一篇博客Hopfield神经网络学习(HNN)中,我们提到Hopefield网络容易发生串扰或陷入局部最优解,导致网络不能正确的识别模式,Boltzmann Machines通过让每个单元按照一定的概率分布发生状态变化可以解决这个问题。

Boltzmann Machines的结构

Boltzmann Machines保持了Hopefield的假设:

  • 权重对称
  • 自身无连接
  • 二值输出

输出单元 i ​ i​ i有一定的概率改变自身的值,首先需要计算它的总输入 z i ​ z_i​ zi:
(1) z i = b i + ∑ j s j w i j ​ z_i=b_i+\sum_js_jw_{ij}\tag{1}​ zi=bi+jsjwij(1)
上式中 w i j ​ w_{ij}​ wij是连接单元 i ​ i​ i j ​ j​ j的权重,然后单元 i ​ i​ i会按照下面的概率更新自身:
(2) p r o b ( s i = 1 ) = 1 1 + e − z i ​ prob(s_i=1)=\frac{1}{1+e^{-z_i}}\tag{2}​ prob(si=1)=1+ezi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值