文章目录
Boltzmann Machines起源
在上一篇博客Hopfield神经网络学习(HNN)中,我们提到Hopefield网络容易发生串扰或陷入局部最优解,导致网络不能正确的识别模式,Boltzmann Machines通过让每个单元按照一定的概率分布发生状态变化可以解决这个问题。
Boltzmann Machines的结构
Boltzmann Machines保持了Hopefield的假设:
- 权重对称
- 自身无连接
- 二值输出
输出单元 i i i有一定的概率改变自身的值,首先需要计算它的总输入 z i z_i zi:
(1) z i = b i + ∑ j s j w i j z_i=b_i+\sum_js_jw_{ij}\tag{1} zi=bi+j∑sjwij(1)
上式中 w i j w_{ij} wij是连接单元 i i i和 j j j的权重,然后单元 i i i会按照下面的概率更新自身:
(2) p r o b ( s i = 1 ) = 1 1 + e − z i prob(s_i=1)=\frac{1}{1+e^{-z_i}}\tag{2} prob(si=1)=1+e−zi