Caffe源码(五):conv_layer 分析

目录

简单介绍

首先要明确的一点是:ConvolutionLayer 是 BaseConvolutionLayer的子类,BaseConvolutionLayer 是 Layer 的子类。ConvolutionLayer 除了继承了相应的成员变量和函数以外,自己的成员函数主要有:compute_output_shape,Forward_cpu,Backward_cpu 。

主要函数

1. compute_output_shape 函数:

计算输出feature map 的shape。

template <typename Dtype>
void ConvolutionLayer<Dtype>::compute_output_shape() {
  this->height_out_ = (this->height_ + 2 * this->pad_h_ - this->kernel_h_)
      / this->stride_h_ + 1;  //输出feature map 的 height
  this->width_out_ = (this->width_ + 2 * this->pad_w_ - this->kernel_w_)
      / this->stride_w_ + 1;  //输出 feature map 的 width 
}

2.Forward_cpu 函数:

该函数在Layer 中声明,实现前向传播功能。

template <typename Dtype>
void ConvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  const Dtype* weight = this->blobs_[0]->cpu_data();
   //blobs_ 用来存储可学习的参数blobs_[0] 是weight,blobs_[1]是bias
  for (int i = 0; i < bottom.size(); ++i) { 
  //这里的i为输入bottom的个数,输入多少个bottom就产生相应个数的输出 top。
    const Dtype* bottom_data = bottom[i]->cpu_data();
    Dtype* top_data = top[i]->mutable_cpu_data();
    for (int n = 0; n < this->num_; ++n) {
      this->forward_cpu_gemm(bottom_data + bottom[i]->offset(n), weight,
          top_data + top[i]->offset(n));//计算卷积操作之后的输出
      if (this->bias_term_) {
        const Dtype* bias = this->blobs_[1]->cpu_data();
        this->forward_cpu_bias(top_data + top[i]->offset(n), bias);
      }//加上bias
    }
  }
}

Layer的构造函数

explicit Layer(const LayerParameter& param)
    : layer_param_(param) {
      // Set phase and copy blobs (if there are any).
      phase_ = param.phase();
      if (layer_param_.blobs_size() > 0) {
        blobs_.resize(layer_param_.blobs_size());
        for (int i = 0; i < layer_param_.blobs_size(); ++i) {
          blobs_[i].reset(new Blob<Dtype>());
          blobs_[i]->FromProto(layer_param_.blobs(i));
        }
      }
    }//用从protobuf 读入message LayerParameter 中的blobs 初始化 blobs_ 
     //blobs_定义:vector<shared_ptr<Blob<Dtype> > > blobs_

3.Backward_cpu 函数

实现反向传播,根据上一层传下来的导数计算相应的bottom data , weight, bias 的导数

template <typename Dtype>
void ConvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
  const Dtype* weight = this->blobs_[0]->cpu_data();
  Dtype* weight_diff = this->blobs_[0]->mutable_cpu_diff();
  if (this->param_propagate_down_[0]) {
    caffe_set(this->blobs_[0]->count(), Dtype(0), weight_diff);
  }
  if (this->bias_term_ && this->param_propagate_down_[1]) {
    caffe_set(this->blobs_[1]->count(), Dtype(0),
        this->blobs_[1]->mutable_cpu_diff());
  }
  for (int i = 0; i < top.size(); ++i) {
    const Dtype* top_diff = top[i]->cpu_diff();//上一层传下来的导数
    const Dtype* bottom_data = bottom[i]->cpu_data();
    Dtype* bottom_diff = bottom[i]->mutable_cpu_diff();//传给下一层的导数
    // Bias gradient, if necessary.
    if (this->bias_term_ && this->param_propagate_down_[1]) {
      Dtype* bias_diff = this->blobs_[1]->mutable_cpu_diff();
      for (int n = 0; n < this->num_; ++n) {
        this->backward_cpu_bias(bias_diff, top_diff + top[i]->offset(n));
      }
    }
    if (this->param_propagate_down_[0] || propagate_down[i]) {
      for (int n = 0; n < this->num_; ++n) {
        // gradient w.r.t. weight. Note that we will accumulate diffs.
        if (this->param_propagate_down_[0]) {
          this->weight_cpu_gemm(bottom_data + bottom[i]->offset(n),
              top_diff + top[i]->offset(n), weight_diff);
        }//对weight 计算导数(用来更新weight)
        // gradient w.r.t. bottom data, if necessary.
        if (propagate_down[i]) {
          this->backward_cpu_gemm(top_diff + top[i]->offset(n), weight,
              bottom_diff + bottom[i]->offset(n));
        }//对bottom数据计算导数(传给下一层)
      }
    }
  }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值