第十八篇 试位法求根
试位法是找到两个符号相反的试解,并在它们之间进行插值,这种方法通常比二分法更有效。
下图显示了根在x = 2范围内的函数f(x)的曲线图。
初始猜测值分别为x = 1和x = 3。“试位法”在(xi,f(xi))和(xi+1,f(xi+1))之间线性插值,将插值线与x轴的交点作为根处的新猜测值。使用与二分法相同的过程,根据具体的情况而定,新猜测值取代了先前的下限值或上限值。插值法可以写成
计算实例:
使用试位法在1.3<x<1.4的范围内找函数的根
使用上面的插值法,结果显示在下面的表格中
该方法的收敛性也可以用f(x) → 0来判定
程序如下
其中有一个主程序和检查收敛的子程序check,还有一个函数程序f33
#对于一个单根的二分法
import B
xi=1.0;xip1=2.0;