高斯拉盖尔(Gauss-Laguerre)法则求积分(python,数值积分)

本文介绍了高斯拉盖尔法则,一种适用于指数衰减函数积分的特殊方法。通过拉盖尔多项式的根确定样本点,讨论了法则的计算实例,并在Python中实现了一个简单的计算程序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第四十三篇 高斯拉盖尔法则

特殊积分规则

到目前为止所考虑的常规法则考虑了有限的积分上下限,而且对要积分的函数的形式没有任何限制。在这篇中,将描述一些特别的法则,这些法则时为了应对一些非常规情况的积分。
在这里插入图片描述

高斯-拉盖尔法则

高斯-拉盖尔法则是专门用于指数衰减函数的形式的积分
在这里插入图片描述
该法则的权值和样本点以一个幂指数的积分函数和积分范围的一半为无穷大。从上面方程的右侧可以看到,该法则的样本点只会被代入函数f(x),而不是整个被积函数e - xf(x)。
这种方法之所以这样叫,是因为采样点是一个叫做拉盖尔多项式的多项式的根,这种多项式是以这种形式出现的
在这里插入图片描述
下表给出了n = 5时该方法的权重和采样点的总结。注意,随着方法顺序的增加,加权系数值迅速减小。高斯-拉盖尔法则的系数可以使用多项式替换来导出,如前一篇所述。例如,将f(x) = 1代入方程,该法则的关系如下
在这里插入图片描述
在这里插入图片描述

计算实例

使用三点高斯拉盖尔法则计算下面的积分
在这里插入图片描述
从上表中n=3时得到
在这里插入图片描述
精确解为0.5

程序如下

分为一个主程序和一个包含高斯拉盖尔样本点和权值的子函数gauss-laguerre

#高斯拉盖尔法则
import numpy as np
import B
import math
nsp=5
samp=np.zeros((nsp,2));wt=np.zeros((nsp))
B.gauss_laguerre(samp,wt)
area=0
def f64(x)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深渊潜航

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值