第四十三篇 高斯拉盖尔法则
特殊积分规则
到目前为止所考虑的常规法则考虑了有限的积分上下限,而且对要积分的函数的形式没有任何限制。在这篇中,将描述一些特别的法则,这些法则时为了应对一些非常规情况的积分。
高斯-拉盖尔法则
高斯-拉盖尔法则是专门用于指数衰减函数的形式的积分
该法则的权值和样本点以一个幂指数的积分函数和积分范围的一半为无穷大。从上面方程的右侧可以看到,该法则的样本点只会被代入函数f(x),而不是整个被积函数e - xf(x)。
这种方法之所以这样叫,是因为采样点是一个叫做拉盖尔多项式的多项式的根,这种多项式是以这种形式出现的
下表给出了n = 5时该方法的权重和采样点的总结。注意,随着方法顺序的增加,加权系数值迅速减小。高斯-拉盖尔法则的系数可以使用多项式替换来导出,如前一篇所述。例如,将f(x) = 1代入方程,该法则的关系如下
计算实例
使用三点高斯拉盖尔法则计算下面的积分
从上表中n=3时得到
精确解为0.5
程序如下
分为一个主程序和一个包含高斯拉盖尔样本点和权值的子函数gauss-laguerre
#高斯拉盖尔法则
import numpy as np
import B
import math
nsp=5
samp=np.zeros((nsp,2));wt=np.zeros((nsp))
B.gauss_laguerre(samp,wt)
area=0
def f64(x)