第八篇 矩形弹性固体的平面或者轴对称应变分析(python,有限元)
引言
此部分程序主要用来解决小应变弹性固体的平衡问题。和上一篇相似,当数据输入端提供单元类型和单元编号的放行,节点坐标和序列号会通过子程序产生,矩形结构的子程序为geom_rect,立方体为hexahearon_xz,通过子程序num_to_g由节点号num和每个节点的约束条件nf得到对应的自由度编号,从这部分开始,将提供有限元网格的划分图,包括未变形网格代码mesh,变形网格代码dismsh,位移向量图代码vecmsh。
计算实例1
2维平面单元,网格划分为三角形,3节点,节点自由度沿x轴计数
x方向网格条数为2,y方向为2,积分点为1,单元类型1种,值为弹性模量E=1.06,泊松比v=0.3
节点x方向坐标值为0.0、0.5、1.0;y方向坐标值为0.0、-0.5、-1.0
约束节点为5个,分别为1、4节点x方向位移,8、9节点y方向位移,7几点两个方向都约束
荷载节点为3个,1、2、3节点沿y轴负方向值为0.25、0.50、0.25
代码1
import numpy as np
import A
type_2d='plane'
element='triangle'
dir='x'
nxe=2;nye=2;nze=0
nst=3
np_types=1
loaded_nodes=3
fixed_freedoms=0
nod=3
nprops=2
nr=5
nodof=2
ndim=2
nip=1
nels=np.array([0])
nn=np.array([0])
A.mesh_size(element,nod,nels,nn,nxe,nye,nze)
ndof=nod*nodof
if type_2d=='axisymmetric':
nst=4
nels=int(nels)
nn=int(nn)
#初始化定义数组
nf=np.ones((nodof,nn),dtype=np.int64)
points=np.ones((nip,ndim))
g=np.ones((ndof,1),dtype=np.int64)
g_coord=np.ones((ndim,nn))
fun=np.ones((nod,1))
coord=np.ones((nod,ndim))
jac=np.ones((ndim,ndim))
g_num=np.ones((nod,nels))
der=np.ones((ndim,nod))
deriv=np.ones((ndim,nod))
bee=np.zeros((nst,ndof))
km=np.ones((ndof,ndof))
eld=np.ones((ndof,1))
weights=np.ones((nip,1))
g_g=np.ones((ndof,nels))
prop=np.ones((nprops,np_types))
num=np.ones((nod,1),dtype=np.int64)
#x_coords=np.ones((nxe+1,1))
#y_coords=np.ones((nxe+1,1))
etype=np.ones((nels,1),dtype=np.int64)
gc=np.ones((ndim,1))
dee=np.zeros((nst,nst))
sigma=np.ones((nst,1))
km=np.zeros((ndof,ndof))
weights=np.ones((nip,1))
if np_types==1:
etype[:,0]=1
else:
etype[:,0]=(1,2,3,4,5)
if np_types==1:
prop[:nprops,np_types-1]=(1.0e6,0.3)
else:
prop[0,:]=(1.92e4,1.92e4,1.92e4,1.92e4,1.92e4)
prop[1,:]=(0.2,0.6,1.0,1.4,1.8)
x_coords=np.array([0.0,0.5,1.0])
y_coords=np.array([0.0,-0.5,-1.0])
#读取nr
if nr!=0:
Dim_1=[1,4,7,8,9]
nf_value=np.array([[0,0,0,1,1],[1,1,0,0,0]])
m=0
for i in Dim_1:
for j in range(1,nodof+1):
nf[j-1,i-1]=nf_value[j-1,m]
m=m+1
#form nf
A.formnf(nf)
neq=int(max(nf.reshape(nf.shape[0]*nf.shape[1],1)))
kdiag=np.zeros((neq,1),dtype=np.int64)
loads=np.zeros((neq+1,1))
##累加单元去发现全局尺寸
for iel in range(1,nels+1):
A.geom_rect(element,iel,x_coords,y_coords,coord,num,dir)
A.num_to_g(num,nf,g)
g_num[:,iel-1]=num[:,0]
g_coord[:,num[:,0]-1]=np.transpose(coord[:,:])
g_g[:,iel-1]=g[:,0]
A.fkdiag(kdiag,g)
for i in range(1,neq):
kdiag[i]=kdiag[i]+kdiag[i-1]
kv=np.zeros((kdiag[neq-1,0],1),dtype=float)
print('一共有'+str(neq)+'等式和天际线存储个数为'+str(kdiag[neq-1,0]))
#单元刚度积分和安装
A.sample(element,points,weights)
for iel in range(1,nels+1):
A.deemat(dee,prop[0,etype[iel-1]-1],prop[1,etype[iel-1]-1])
num[:,0]=g_num[:,iel-1]
coord[:,:]=np.transpose(g_coord[:,num[:,0]-1])
g[:,0]=g_g[:,iel-1]
km[:]=0
for i in range(1,nip+1):
A.shape_fun(fun,points,i)
A.shape_der(der,points,i)
jac=np.dot(der,coord)
det=np.linalg.det(jac)
A.invert(jac)
deriv=np.dot(jac,der)
A.beemat(bee,deriv)
if type_2d=='axisymmetric':
gc=np.dot(fun,coord)
bee[3,0:ndof-1:2]=fun[:]/gc[0]
km[:]=km[:]+np.dot(np.dot(np.transpose(bee),dee),bee)*det*weights[i-1]*gc[0]
#call fsparv
A.fsparv(kv,km,g,kdiag)
###读荷载和位移
if loaded_nodes!=0:
Dim_2 = [1,2,3]
load_value=np.array([[0.0,0.0,0.0],[-0.25,-0.50,-0.25]])
m=0
for i in Dim_2:
for j in range(1,nodof+1):
loads[nf[j-1,i-1]-1]=load_value[j-1,m]
m=m+1
#####方程求解
if fixed_freedoms!=0:
node=np.ones((fixed_freedoms,1),dtype=np.int64)
sense=np.ones((fixed_freedoms,1),dtype=np.int64)
value=np.ones((fixed_freedoms,1))
no=np.ones((fixed_freedoms,1),dtype=np.int64)
node[:,0]=(1,3)
sense[:,0]=(2,1)
value[:,0]=(-0.001,-0.005)
####位移赋值
for i in range(1,fixed_freedoms+1):
no[i-1]=nf[sense[i-1]-1,node[i-1]-1]
kv[kdiag[no-1]-1]=kv[kdiag[no-1]-1]+1e20
loads[no-1,0]=kv[kdiag[no-1,0]-1,0]*value
##荷载增量累加
A.sparin(kv,kdiag)
A.spabac(kv,loads,kdiag)
loads[neq]=0
if type_2d=='axisymmetric':
print('节点 r-位移 z-位移')
else:
print('节点 x-位移 y-位移')
for k in range(1,nn+1):
print(k,end=' ')
for m in range(1,nodof+1):
print('{:9.4e}'.format(loads[nf[m-1,k-1]-1,0]),end=' ')
print()
#取得单元中心点的力矩
nip=1
points=np.ones((nip,ndim))
weights=np.ones((nip,1))
A.sample(element,points,weights)
print('积分点nip='+str(nip)+'应力为')
if type_2d=='axisymmetric':
print('单元 r-坐标 z-坐标')
print('sig_r sig_z tau_rz sig_t')
else:
print('单元 x-坐标 y-坐标 sig_x sig_y tau_xy')
for iel in range(1,nels+1