在腾讯云服务器安装tensorrt8.0(cuda11.0.3,cudnn8.1,ubuntu -server18.04)

本文详细介绍了如何在Ubuntu系统上查看CUDA版本、CUDNN版本,并通过官方途径下载和安装TensorRT,包括.deb包和.tar包的方式,以及Python集成验证。涵盖从环境配置到验证步骤的全过程,适合TensorRT新手和开发者参考。
摘要由CSDN通过智能技术生成

查询服务器的相关信息:
查看cuda版本:cat /usr/local/cuda/version.txt
在这里插入图片描述
查看cudnn的版本
在这里插入图片描述
去nvidia官网找对应的tensorrt版本:https://developer.nvidia.com/nvidia-tensorrt-8x-download
两种方式安装:
一.deb的版本
1.下载deb包去官网

os="ubuntu1x04"
tag="cudax.x-trt7.x.x.x-ga-yyyymmdd"
sudo dpkg -i nv-tensorrt-repo-${os}-${tag}_1-1_amd64.deb
sudo apt-key add /var/nv-tensorrt-repo-${tag}/7fa2af80.pub

sudo apt-get update
sudo apt-get install tensorrt cuda-nvrtc-x-y

如果使用 Python 3.x:
sudo apt-get install python3-libnvinfer-dev

2.将安装以下附加软件包:
python3-libnvinfer

3.如果您打算将TensorRT与TensorFlow一起使用:
sudo apt-get install uff-converter-tf
这 graphsurgeon-tf包也将使用上述命令安装。
4.验证安装
dpkg -l | grep TensorRT``
或者进入python环境
import tensor
print(tensorrt.__version__)

二.下载tar包
根据你的cuda,cudnn环境下载对应的tar包
我下载的TensorRT-8.0.1.6.Linux.x86_64-gnu.cuda-11.3.cudnn8.2.tar.gz

1.解压tar
tar -xzvf TensorRT-8.0.1.6.Linux.x86_64-gnu.cuda-11.3.cudnn8.2.tar.gz
2.添加绝对路径
vim ~/.bashrc
export LD_LIBRARY_PATH=/home/ubuntu/tensorrt8/TensorRT-8.0.1.6/lib:$LD_LIBRARY_PATH
source ~/.bashrc

3.安装tensorrt
cd python
pip install tensorrt-8.0.1.6-cp38-none-linux_x86_64.whl

4.安装uff
cd uff/
pip install uff-0.6.9-py2.py3-none-any.whl
# 验证uff
which convert-to-uff

5.安装graphsurgeon
cd graphsurgeon
pip install graphsurgeon-0.4.5-py2.py3-none-any.whl

在这里插入图片描述

扩展:
TensorRT报错的一百种姿势:tensorrt安装报错

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值