YOLO框架最新综述从YOLOV1-YOLOV11(2024年10月23)

这篇文章《YOLO框架:目标检测中的演变、应用与基准的全面回顾》是一篇关于YOLO(You Only Look Once)框架的综合性回顾。YOLO是一种具有革命性的单阶段目标检测算法,以其在速度和准确性之间的显著平衡而闻名。文章由Momina Liaqat Ali和Zhou Zhang撰写,发表日期为2024年10月23日,是一篇未经过同行评审的预印本。
在这里插入图片描述

综述主要内容

YOLO的发展历程: 从最初的YOLOv1到最新的YOLOv11,每一代版本都在特征提取、边界框预测和优化技术等方面引入了重要的创新。这些改进特别是在骨干网络(backbone)、颈部(neck)和头部(head)组件上的进步,使得YOLO成为实时目标检测领域的领先解决方案。

YOLO的应用领域: 文章探讨了YOLO在多个领域的应用,包括但不限于:

  • 医疗成像:在COVID-19检测、乳腺癌识别和肿瘤定位中发挥了重要作用,提高了诊断效率。
  • 农业:用于樱桃、番茄等作物的果实检测,以及农业害虫的快速检测。
  • 林业:基于改进的YOLOv5模型和迁移学习,用于森林害虫的检测。
  • 自动驾驶:通过结合特征增强和注意力机制,提出了轻量级YOLOv8番茄检测算法。
  • 工业制造:用于表面缺陷检测,如钢板表面缺陷检测。
  • 视频监控:在恶劣天气条件下的目标检测性能评估,例如沙尘暴环境中的车辆检测。
  • 无人机:基于轻量级YOLOv5模型的森林火灾检测。

重点研讨: 跨多个基准数据集对YOL0 模型(例如YOLOv9、YOLO- NAS、YOLOv10 和YOLONI1)进行深入的性能分析。该分析比较了它们对一系列应用的适用性,从轻量级联入式系统到高分辨率、 复杂的物体检测任务。

突破进展: 论文还解决了YOLO 的挑战,例如遮挡、小物体检测和数据集偏差,同时讨论了旨在減轻这些限制的最新进展。

本综述的数据来源

检索涵盖了一系列顶级出版物包括但不限于:

  • IEEE模式分析和机器智能汇刊(TPANI)
  • 计算机视觉和图像理解(CVIU)
  • 机器学习研究杂志 (JILR)
  • 国际计算机视觉杂志 (IJCV )
  • 人工智能研究杂志 (JAIR)
  • IBBE Xplore、SpringerLink以及关键会议论文集,包括CVPR、ICCV和ECCV

搜索结果产生了53200篇文章的初始池。为了管理这个庞大的馆藏,采用了两步筛选流程,最终本文综述由126篇相关文章所整理&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值