AI编译器
文章平均质量分 90
早睡的叶子
码农,计算机爱好者。
展开
-
一文带你读懂MLIR论文,理解MLIR设计准则.
研究背景、研究问题、研究目的和研究的意义一种构建可重用和可扩展编译器基础设施的新方法。MLIR 解决了软件碎片问题、异构硬件编译问题,显着降低了构建特定领域编译器以及将现有编译器连接在一起的成本。MLIR 在不同的抽象层次,不同应用领域,不同硬件目标和不同执行环境下加快代码生成器,翻译器和优化器的设计和实现。从研究的角度探讨MLIR 的扩展和演进,给出该方法在设计、语义、优化、系统及工程方面的机遇与挑战。原创 2024-07-21 22:26:59 · 1254 阅读 · 0 评论 -
MLIR的TOY教程学习笔记
MLIR 中,每一个operation都与代码位置强相关,不像LLVM,可以随意删除。MLIR可以自定义IR的所有属性,operation,type,同时IR总是可以简化为上述途中的格式。这样统一的格式,就方便了MLIR解析和重新表示任何IR。定义方言代码形势tablegen通过代码操作,略定义OP定义参数和结果// 文档}];// 输入// 输出// 验证器,设置为1是为了生成1个默认的验证方法,该方法会在该OP的构造器完成后调用。原创 2024-07-21 21:37:12 · 1028 阅读 · 0 评论 -
使用docker镜像快速构建TVM
如何使用docker构建TVM开发环境原创 2024-01-07 12:35:28 · 1328 阅读 · 0 评论 -
AI编译器-图常见优化算法-算子融合
通过将多个逐元素运算融合为一个大的逐元素运算,可以减少内存访问和计算的开销,从而提高性能。多个逐元素运算和批归一化融合:将多个逐元素运算和批归一化层融合为一个大的逐元素运算,减少内存访问和计算的开销。多个逐元素运算和全连接层融合:将多个逐元素运算和全连接层融合为一个大的全连接层,减少内存访问和计算的开销。多个逐元素运算和卷积层融合:将多个逐元素运算和卷积层融合为一个大的卷积层,减少内存访问和计算的开销。多个卷积层和逐元素运算融合:将多个卷积层和逐元素运算融合为一个大的卷积层,减少内存访问和计算的开销。原创 2023-04-24 22:51:24 · 3847 阅读 · 0 评论 -
TVM- End-to-End Optimization Stack for Deep Learning
深度学习模型现在可以识别图像、处理自然语言并在具有挑战性的策略游戏中击败人类。现代硬件稳步提升的计算能力在深度学习目前在许多问题领域的普遍性和相关性中发挥了突出作用。许多最流行的深度学习框架,如 TensorFlow、MXNet、Caffe 和 PyTorch,通过将支持集中在一小类服务器级 GPU 设备上来利用现代硬件的力量——这种支持取决于高度工程化的使用和供应商特定的 GPU 库。然而,专业深度学习加速器的数量和多样性正在迅速增加。原创 2023-04-24 21:57:54 · 611 阅读 · 0 评论 -
TVM: An Automated End-to-End Optimizing Compiler for Deep Learning
TVM论文学习原创 2023-04-24 21:53:51 · 682 阅读 · 0 评论 -
深度学习编译器相关的优秀论文合集-附下载地址
AI编译器论文集合原创 2023-04-11 00:48:38 · 990 阅读 · 0 评论 -
深度学习模型量化学习笔记
深度学习模型量化原创 2022-10-26 22:19:43 · 1344 阅读 · 0 评论 -
Learning to Quantize Deep Networks by Optimizing Quantization Intervals with Task Loss 论文总结
三星量化论文精读原创 2022-10-16 17:15:46 · 1171 阅读 · 0 评论 -
深度学习网络量化白皮书论文学习
卷积神经网络量化相关知识总结原创 2022-10-11 18:19:41 · 1177 阅读 · 0 评论 -
TVM安装编译指南
使用brew安装的llvm地址:/usr/local/Cellar/llvm@9/9.0.1_4/bin/bin/llvm-config开启LLVM#---------------------------------------------# Contrib libraries#---------------------------------------------# Whether to build with BYODT software emulated posit custom d原创 2022-05-17 00:30:31 · 1855 阅读 · 0 评论