HDU 3377 Plan 解题报告(插头DP)

    解题报告:刚开始时卡了一下,以为用0,1表示插头即可,终点处判断有一个1插头就更新答案。后来想了一下,非起点到终点的部分可能成环,而结果也会被加进去。

    如下图:

例子

    所以还是用以前Ural1519 的方法,使用括号序列。如果发现左插头为1,上插头为2,则放弃该状态。右下角如果有左插头亦或上插头,更新答案。

    如果不会插头DP,可以看我的上一篇博客:插头DP入门

    代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int maxn = 100013;
int now,pre;
struct Node
{
	int H[maxn];
	int S[maxn];
	int N[maxn];
	int size;
	void init()
	{
		size=0;
		memset(H,-1,sizeof(H));
	}
	void push(int SS,int num)
	{
		int s=SS%maxn;
		while( ~H[s] && S[H[s]]!=SS )
			s=(s+1)%maxn;
		if( ~H[s] )
		{
			N[H[s]]=max(N[H[s]],num);
			return ;
		}

		S[size]=SS;
		N[size]=num;
		H[s]=size++;
	}
} dp[2];

int maze[10][10];

int get(int S,int p,int l=2)
{
	return (S>>(p*l))&((1<<l)-1);
}

void set(int &S,int p,int v,int l=2)
{
	S^=get(S,p,l)<<(p*l);
	S^=(v&((1<<l)-1))<<(p*l);
}

int main()
{
	int m,n;
	int cas=1;
	while(~scanf("%d%d",&n,&m))
	{
		for(int i=0;i<n;i++) for(int j=0;j<m;j++)
			scanf("%d",&maze[i][j]);

		now=1;
		pre=0;
		dp[now].init();
		dp[now].push(1,0);

		int ans=(1<<31);
		for(int i=0;i<n;i++)
		{
			for(int j=0;j<m;j++)
			{
				swap(now,pre);
				dp[now].init();

				for(int s=0;s<dp[pre].size;s++)
				{
					int S=dp[pre].S[s];
					int num=dp[pre].N[s];
					int p=get(S,j);
					int q=get(S,j+1);

					if(p==0 && q==0)
					{
						dp[now].push(S,num);
						set(S,j,1);
						set(S,j+1,2);
						if(i<n-1 && j<m-1)
							dp[now].push(S,num+maze[i][j]);
					}
					else if((p>0) ^ (q>0))
					{
						if(i==n-1 && j==m-1)
						{
							set(S,j,0);
							set(S,j+1,0);
							if(S==0)
								ans=max(ans,num+maze[i][j]);
							continue;
						}
						if(i+(p>0)<n && j+(q>0)<m)
							dp[now].push(S,num+maze[i][j]);
						set(S,j,q);
						set(S,j+1,p);
						if(i+(q>0)<n && j+(p>0)<m)
							dp[now].push(S,num+maze[i][j]);
					}
					else if(p==2 && q==1)
					{
						set(S,j,0);
						set(S,j+1,0);
						dp[now].push(S,num+maze[i][j]);
					}
					else if(p==1 && q==2)
					{
					}
					else if(p==1 && q==1)
					{
						int find=1;
						for(int k=j+2;k<=m;k++)
						{
							int v=get(S,k);
							if(v==1)
								find++;
							else if(v==2)
								find--;
							if(find==0)
							{
								set(S,j,0);
								set(S,j+1,0);
								set(S,k,1);
								dp[now].push(S,num+maze[i][j]);
								break;
							}
						}
					}
					else if(p==2 && q==2)
					{
						int find=1;
						for(int k=j-1;k>=0;k--)
						{
							int v=get(S,k);
							if(v==2)
								find++;
							else if(v==1)
								find--;
							if(find==0)
							{
								set(S,j,0);
								set(S,j+1,0);
								set(S,k,2);
								dp[now].push(S,num+maze[i][j]);
								break;
							}
						}
					}
				}
			}

			for(int s=0;s<dp[now].size;s++)
				dp[now].S[s]<<=2;
		}

		printf("Case %d: %d\n",cas++,ans);
	}
}

     最小表示法:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;

const int maxn=59999;
const int L=3;
int now,pre;
int n,m;
int ans;
int endx,endy;
int maze[15][15];
int code[15],ch[15];
struct Node
{
	int h[maxn];
	int n[maxn];
	LL s[maxn];
	int size;
	void init()
	{
		memset(h,-1,sizeof(h));
		size=0;
	}

	void push(LL ss,int num)
	{
		int i=ss%maxn;
		while( ~h[i] && s[h[i]]!=ss )
			i=(i+1)%maxn;
		if( ~h[i] )
		{
			n[h[i]]=max(n[h[i]],num);
		}
		else
		{
			s[size]=ss;
			n[size]=num;
			h[i]=size++;
		}
	}
} dp[2];

void decode(LL s)
{
	for(int i=0;i<=m;i++)
		code[i]=s&((1<<L)-1),s>>=L;
}

LL encode()
{
	memset(ch,-1,sizeof(ch));
	ch[0]=0;
	LL s=0;
	int cnt=1;

	for(int i=m;i>=0;i--)
	{
		if( ch[code[i]]==-1 ) ch[code[i]]=cnt++;
		s<<=L;
		s|=ch[code[i]];
	}
	return s;
}

void shift()
{
	for(int s=0;s<dp[now].size;s++)
		dp[now].s[s]<<=L;
}

void merge(int a,int b)
{
	for(int i=0;i<=m;i++) if(code[i]==a)
		code[i]=b;
}

void doGrid(int i,int j)
{
	for(int s=0;s<dp[pre].size;s++)
	{
		decode(dp[pre].s[s]);
		int num=dp[pre].n[s];
		int left=code[j];
		int up=code[j+1];
		int ma=max(left,up);
		int mi=min(left,up);
		int val=maze[i][j];

		if(ma==0)
		{
			dp[now].push(encode(),num);
			if(i<n-1 && j<m-1)
			{
				code[j]=code[j+1]=13;
				dp[now].push(encode(),num+val);
			}
		}
		else if(mi==0)
		{
			if(i<n-1)
			{
				code[j]=ma;
				code[j+1]=0;
				dp[now].push(encode(),num+val);
			}
			if(j<m-1)
			{
				code[j]=0;
				code[j+1]=ma;
				dp[now].push(encode(),num+val);
			}
			if(i==n-1 && j==m-1)
			{
				code[j]=0;
				code[j+1]=0;
				if(encode()==0) ans=max(ans,num+val);
			}
		}
		else if(left==up)
		{
		}
		else
		{
			code[j]=code[j+1]=0;
			merge(left,up);
			dp[now].push(encode(),num+val);
		}
	}
}

void solve()
{
	now=1,pre=0;
	ans=(1<<31);
	dp[now].init();
	dp[now].push(1,0);

	for(int i=0;i<n;i++)
	{
		for(int j=0;j<m;j++)
		{
			swap(now,pre);
			dp[now].init();
			doGrid(i,j);
		}
		shift();
	}
}

void init()
{
	memset(maze,0,sizeof(maze));
	for(int i=0;i<n;i++)
		for(int j=0;j<m;j++)
			scanf("%d",&maze[i][j]);
}

int main()
{
	int cas=1;
	while(~scanf("%d%d",&n,&m))
	{
		init();
		solve();
		printf("Case %d: %d\n",cas++,ans);
	}
}



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值