算法效率 · 时间复杂度 · 空间复杂度

一、算法效率

算法效率分为两种:第一种是时间效率,第二种是空间效率。

时间效率称为时间复杂度,而空间效率被称为空间复杂度。时间复杂度主要衡量的是一个算法的运算速度,而空间复杂度主要衡量一个算法所需要的额外空间。

在计算机发展的早期,计算机的存储容量很小,所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们已经不需要太关注一个算法的空间复杂度。


二、时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。

一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才知道。但是我们需要每个算法都上机测试吗?是可以,但是很麻烦,所有才有了时间复杂度这个分析方法。

一个算法所花费的时间与其中语句的执行次数成正比例算法中的基本操作的执行次数,为算法的时间复杂度


2.2 大O的渐进表示法

计算一下 func1 基本操作执行了几次?

void func1(int N){
	int count = 0;
	for (int i = 0; i < N ; i++) {
		for (int j = 0; j < N ; j++) {
			count++;
		}
	}
	for (int k = 0; k < 2 * N ; k++) {
		count++;
	}
	int M = 10;
	while ((M--) > 0) {
		count++;
	}
	System.out.println(count);
}

Func1 执行的基本操作次数

F(N) = N^2 + 2*N + 10

N = 10 		F(N) = 130
N = 100		F(N) = 10210
N = 1000 	F(N) = 1002010

实际中我们计算时间复杂度的时候,我们其实并不一定要计算到很精确的执行次数,而是大概执行次数,那么这里我们使用大O渐进表示法

大O符号:是用于描述函数渐进行为的数学符号
推导大O阶方法:

1. 用常数 1 取代运行时间中的所有加法常数。
2. 在修改后的运行次数函数中,只保留最高阶项。
3. 如果最高阶项存在且不是 1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1 的时间复杂度为:

O(N^2)

N = 10 		F(N) = 100
N = 100		F(N) = 10000
N = 1000 	F(N) = 1000000

通过上面我们会发现,大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

另外有些算法的时间复杂度存在最好、平均和最坏的情况

最坏情况 --- 任意输入规模的最大运行次数(上界)
平均情况 --- 任意输入规模的期望运行次数
最好情况 --- 任意输入规模的最小运行次数(下界)

例如:在一个长度为 N 的数组中找一个元素 x.
最好情况 --- 1 次找到
最坏情况 --- N 次找到
平均情况 --- N / 2 次找到

我们在实际中,一般情况都是关注算法的最坏运行情况,所以数组中搜索数据的时间复杂度为O(N).


2.3 常见时间复杂度计算举例

实例一

// 计算func2的时间复杂度?
void func2(int N) {
	int count = 0;
	for (int k = 0; k < 2 * N ; k++) {
		count++;
	}
	int M = 10;
	while ((M--) > 0) {
		count++;
	}
	System.out.println(count);
}

//
2N + 10O表示法:O(N)

实例二

// 计算func3的时间复杂度?
void func3(int N, int M) {
	int count = 0;
	for (int k = 0; k < M; k++) {
		count++;
	}
	for (int k = 0; k < N ; k++) {
		count++;
	}
	System.out.println(count);
}

//
M + NO表示法:O(M + N)

实例三

// 计算func4的时间复杂度?
void func4(int N) {
	int count = 0;
	for (int k = 0; k < 100; k++) {
		count++;
	}
	System.out.println(count);
}

//
100O表示法:O(1)

实例4

// 计算bubbleSort的时间复杂度?
void bubbleSort(int[] array) {
	for (int end = array.length; end > 0; end--) {
		boolean sorted = true;
		for (int i = 1; i < end; i++) {
			if (array[i - 1] > array[i]) {
				Swap(array, i - 1, i);
				sorted = false;
			}
		}
		if (sorted == true) {
			break;
		}
	}
}

//
O(N^2)

实例五

// 计算binarySearch的时间复杂度?
int binarySearch(int[] array, int value) {
	int begin = 0;
	int end = array.length - 1;
	while (begin <= end) {
		int mid = begin + ((end-begin) / 2);
		if (array[mid] < value)
			begin = mid + 1;
		else if (array[mid] > value)
			end = mid - 1;
		else
			return mid;
	}
	return -1;
}

//
O(logN)

实例六

// 计算阶乘递归factorial的时间复杂度?
long factorial(int N) {
	return N < 2 ? N : factorial(N-1) * N;
}

//
递归了N次,所以是O(N).

实例七

// 计算斐波那契递归fibonacci的时间复杂度?
int fibonacci(int N) {
	return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}

//
2^N

三、空间复杂度

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度。空间复杂度不是程序占用了多少bytes的空间,而是计算变量的个数

空间复杂度计算规则基本跟时间复杂度类似,也是大O渐进表示法

实例一

// 计算bubbleSort的空间复杂度?
void bubbleSort(int[] array) {
	for (int end = array.length; end > 0; end--) {
		boolean sorted = true;
		for (int i = 1; i < end; i++) {
			if (array[i - 1] > array[i]) {
				Swap(array, i - 1, i);
				sorted = false;
			}
		}
		if (sorted == true) {
			break;
		}
	}
}

//
使用常数个额外空间
O(1)

实例二

// 计算fibonacci的空间复杂度?
int[] fibonacci(int n) {
	long[] fibArray = new long[n + 1];
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 2; i <= n ; i++) {
		fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
	}
	return fibArray;
}

//
动态开辟N个空间
O(N)

实例三

// 计算阶乘递归Factorial的时间复杂度?
long factorial(int N) {
	return N < 2 ? N : factorial(N-1)*N;
}

//
递归调用N次,开辟N个栈帧,每个栈帧使用常数个空间.
O(N)
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值