Highest Random Weight算法及其扩展
-Highest Random Weight算法的介绍
-扩展的HRW算法
Highest Random Weight算法的介绍
Highest Random Weight(HRW)即最高随机加权哈希是一种允许客户端实现分布式协议来均衡服务器缓存的算法,该算法解决了分布式散列表的问题:给定对象O的一组客户端,使得这些客户端在一组N个站点(例如,服务器)放置的位置上达成一致。基本思想是对于给定的对象O,使用伪随机函数Weight(O,Si)为每一个服务器Si生成一个随机权重,给定对象只能存储在具有最高权重的服务器中。HRW算法可以使用如下函数表示:
F(rK)=Si:Weight(O,Si)>=Weight(O,Sj) (1)
其中伪随机函数可以表示为:
Weight(O,Si)=(1103515245*(1103515245*Si+12345) XOR D(K))+12345) (mod 231) (2)
扩展的HRW算法
由于最高随机权重哈希是一种客户端实现的分布式协议,因此,为了降低客户端的运行时间,本文提出了一种扩展的HRW算法,并引入了虚拟节点和虚拟层次树的概念,通过降低层次结构的同时在每一层次应用HRW算法来实现O(logn)的运行时间。其中涉及的概念定义如下:
定义1 实节点 服务器,作为虚拟层次树中的叶子节点&#