【LibreOJ 】6678 礼物 题解

题目链接

思路

题目要求在树上求最短路,我们很容易想到LCA来解决。

但问题我们需要同时计算能获得的最大值,所以我们需要额外的倍增数组来维护一些值。

那么具体是什么呢?

  • 假设我们从 x x x点出发,到达 L C A ( x , y ) LCA(x,y) LCA(x,y)的时候,进行了买入操作,在 L C A ( x , y ) LCA(x,y) LCA(x,y) y y y的路上,进行了卖出操作,那么我们就需要直到 x − L C A ( x , y ) x-LCA(x,y) xLCA(x,y)上的最大值, L C A ( x , y ) − y LCA(x,y)-y LCA(x,y)y上的最小值。所以我们需要两个倍增数组,一个 m a x F maxF maxF维护最大值,一个位置最小值 m i n F minF minF(比如 m a x F [ x ] [ i ] maxF[x][i] maxF[x][i]表示从 x x x到它的 i i i级祖先上最大值是多少)
  • 假如我们直接在 x − L C A ( x , y ) x-LCA(x,y) xLCA(x,y)进行了买入卖出操作,那么我们需要直接计算这个最大值,设 u p [ x ] [ i ] up[x][i] up[x][i]表示从 x x x到它的 i i i祖先进行了先买后卖操作所能获得最大值。那么我们怎么维护更新它呢?
    y = f [ x ] [ i − 1 ] y = f[x][i-1] y=f[x][i1],那么最大值可能由以下三种情况中产生:
    • x − y x-y xy中先卖后买,即 u p [ x ] [ i − 1 ] up[x][i-1] up[x][i1]
    • y − f [ x ] [ i ] y - f[x][i] yf[x][i]中先买后卖,即 u p [ y ] [ i − 1 ] up[y][i-1] up[y][i1]
    • x − y x-y xy中买入,在 y − f [ y ] [ i − 1 ] y - f[y][i-1] yf[y][i1]中卖出,即 m a x F [ x ] [ i − 1 ] − m i n F [ x ] [ i − 1 ] maxF[x][i-1] - minF[x][i-1] maxF[x][i1]minF[x][i1]
  • L C A ( x , y ) − y LCA(x,y) - y LCA(x,y)y中进行先买后卖操作,我们新开一个 d o w n [ x ] [ i ] down[x][i] down[x][i]数组,含义与 u p up up类似,但注意,顺序不一样,这个表示从 x x x i i i级祖先到它本身,进行先买后卖操作。

一些细节

在求答案的过程中,使用了这种方式遍历倍增数组。
比如 9 = 2 3 + 2 0 9 = 2^3 + 2^0 9=23+20,那么就会先执行 x ′ = f [ x ] [ 3 ] x' = f[x][3] x=f[x][3],后执行 x ′ ′ = f [ x ′ ] [ 0 ] x'' = f[x'][0] x=f[x][0]

for(int i = 20; i >= 0; --i)
    if(dep & (1 << i)) { 
        ans = max(ans, max(up[x][i], maxF[x][i] - minNum));
        minNum = min(minNum, minF[x][i]);
        x = f[x][i];
    }

代码

#include <cstdio>
#include <iostream>
using namespace std;

const int maxN = 3e5 + 7;

struct Edge {
    int from, to;
}e[maxN << 1];

int n, m, head[maxN], cnt, val[maxN], f[maxN][31], d[maxN], minF[maxN][31], maxF[maxN][31], up[maxN][31], down[maxN][31];

inline void add(int u, int v)
{
    e[++cnt].from = head[u];
    e[cnt].to = v; 
    head[u] = cnt;
}

void dfs(int x, int fa)
{
    d[x] = d[fa] + 1; f[x][0] = fa;
    maxF[x][0] = max(val[x], val[fa]); minF[x][0] = min(val[x], val[fa]);
    up[x][0] = max(0, val[fa] - val[x]); down[x][0] = max(0, val[x] - val[fa]);
    for(int i = 1; i <= 20; ++i) {
        f[x][i] = f[f[x][i - 1]][i - 1];
        if(!f[x][i])
            break;
        int y = f[x][i - 1];
        maxF[x][i] = max(maxF[x][i - 1], maxF[y][i - 1]);
        minF[x][i] = min(minF[x][i - 1], minF[y][i - 1]);
        up[x][i] = max(max(up[x][i - 1], up[y][i - 1]), maxF[y][i - 1] - minF[x][i - 1]);
        down[x][i] = max(max(down[x][i - 1], down[y][i - 1]), maxF[x][i - 1] - minF[y][i -1]);
    }
    for(int i = head[x]; i; i = e[i].from) {
        int y = e[i].to;
        if(y == fa)
            continue;
        dfs(y, x);
    }
}

inline int Lca(int x, int y)
{
    if(d[x] > d[y])
        swap(x, y);
    for(int i = 21; i >= 0; --i)
        if(d[f[y][i]] >= d[x])
            y = f[y][i];
    if(x == y)
        return x;
    for(int i = 21; i >= 0; --i)
        if(f[x][i] != f[y][i])
            x = f[x][i], y = f[y][i];
    return f[x][0];
}

inline int query(int x, int y)
{
    int lca = Lca(x, y), ans = 0, maxNum = 0, minNum = 0x3f3f3f3f;
    int dep = d[x] - d[lca];
    if(dep) { // 如果x不是lca(x,y)
        for(int i = 20; i >= 0; --i)
            if(dep & (1 << i)) { 
                ans = max(ans, max(up[x][i], maxF[x][i] - minNum));
                minNum = min(minNum, minF[x][i]);
                x = f[x][i];
            }
    }
    dep = d[y] - d[lca];
    if(dep) {
        for(int i = 20; i >= 0; --i)
            if(dep & (1 << i)) {
                ans = max(ans, max(down[y][i], maxNum - minF[y][i]));
                maxNum = max(maxNum, maxF[y][i]);
                y = f[y][i];
            }        
    }
    return max(ans, maxNum - minNum);
}

int main()
{
    scanf("%d", &n);
    for(int i = 1; i <= n; ++i)
        scanf("%d", &val[i]);
    for(int i = 1; i < n; ++i) {
        int x, y; scanf("%d%d", &x, &y);
        add(x, y); add(y, x);
    }
    dfs(1, 0);
    scanf("%d", &m);
    for(int i = 1; i <= m; ++i) {
        int x, y; scanf("%d%d", &x, &y);
        printf("%d\n", query(x, y));
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
06-01
这道题是一道典型的费用限制最短路题目,可以使用 Dijkstra 算法或者 SPFA 算法来解决。 具体思路如下: 1. 首先,我们需要读入输入数据。输入数据中包含了道路的数量、起点和终点,以及每条道路的起点、终点、长度和限制费用。 2. 接着,我们需要使用邻接表或邻接矩阵来存储图的信息。对于每条道路,我们可以将其起点和终点作为一个有向边的起点和终点,长度作为边权,限制费用作为边权的上界。 3. 然后,我们可以使用 Dijkstra 算法或 SPFA 算法求解从起点到终点的最短路径。在这个过程中,我们需要记录到每个点的最小费用和最小长度,以及更新每条边的最小费用和最小长度。 4. 最后,我们输出从起点到终点的最短路径长度即可。 需要注意的是,在使用 Dijkstra 算法或 SPFA 算法时,需要对每个点的最小费用和最小长度进行松弛操作。具体来说,当我们从一个点 u 经过一条边 (u,v) 到达另一个点 v 时,如果新的费用和长度比原来的小,则需要更新到达 v 的最小费用和最小长度,并将 v 加入到优先队列(Dijkstra 算法)或队列(SPFA 算法)中。 此外,还需要注意处理边权为 0 或负数的情况,以及处理无法到达终点的情况。 代码实现可以参考以下样例代码: ```c++ #include <cstdio> #include <cstring> #include <queue> #include <vector> using namespace std; const int MAXN = 1005, MAXM = 20005, INF = 0x3f3f3f3f; int n, m, s, t, cnt; int head[MAXN], dis[MAXN], vis[MAXN]; struct Edge { int v, w, c, nxt; } e[MAXM]; void addEdge(int u, int v, int w, int c) { e[++cnt].v = v, e[cnt].w = w, e[cnt].c = c, e[cnt].nxt = head[u], head[u] = cnt; } void dijkstra() { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q; memset(dis, 0x3f, sizeof(dis)); memset(vis, 0, sizeof(vis)); dis[s] = 0; q.push(make_pair(0, s)); while (!q.empty()) { int u = q.top().second; q.pop(); if (vis[u]) continue; vis[u] = 1; for (int i = head[u]; i != -1; i = e[i].nxt) { int v = e[i].v, w = e[i].w, c = e[i].c; if (dis[u] + w < dis[v] && c >= dis[u] + w) { dis[v] = dis[u] + w; q.push(make_pair(dis[v], v)); } } } } int main() { memset(head, -1, sizeof(head)); scanf("%d %d %d %d", &n, &m, &s, &t); for (int i = 1; i <= m; i++) { int u, v, w, c; scanf("%d %d %d %d", &u, &v, &w, &c); addEdge(u, v, w, c); addEdge(v, u, w, c); } dijkstra(); if (dis[t] == INF) printf("-1\n"); else printf("%d\n", dis[t]); return 0; } ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值