爆头
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 703 Accepted Submission(s): 245
Problem Description
gameboy是一个CS高手,他最喜欢的就是扮演警察,手持M4爆土匪的头。也许这里有人没玩过CS,有必要介绍一下“爆头”这个术语:所谓爆头,就是子弹直接命中对方的头部,以秒杀敌人。
现在用一个三维的直角坐标系来描述游戏中的三维空间(水平面为xoy平面,z轴正方向是上方)。假设游戏中角色的头是一个标准的球。告诉你土匪的身高,头部半径,所站位置的坐标;gameboy所控警察的身高,头部半径,所站位置的坐标,以及枪头所指方向的单位向量。gameboy所控警察所握的是M4,抢瞄准时枪膛中的子弹跟视线基本同线,我们忽略它们的距离,就当成同线。由于土匪手持AK47,所以他是很嚣张地正立着。而警察手持M4,正在瞄准,由于瞄准时身体微弯,视线从头心出发,他头部的实际高度比正立时低10%。
你的任务就是,计算gameboy在这一刻扣下扳机,能否爆土匪的头。注意:这里忽略子弹的直径和重力作用,也就是说子弹是无限小的,弹道是一条笔直的射线,警察与土匪间没有障碍物。并且只要子弹擦到头部,哪怕是边缘,也算爆头。
现在用一个三维的直角坐标系来描述游戏中的三维空间(水平面为xoy平面,z轴正方向是上方)。假设游戏中角色的头是一个标准的球。告诉你土匪的身高,头部半径,所站位置的坐标;gameboy所控警察的身高,头部半径,所站位置的坐标,以及枪头所指方向的单位向量。gameboy所控警察所握的是M4,抢瞄准时枪膛中的子弹跟视线基本同线,我们忽略它们的距离,就当成同线。由于土匪手持AK47,所以他是很嚣张地正立着。而警察手持M4,正在瞄准,由于瞄准时身体微弯,视线从头心出发,他头部的实际高度比正立时低10%。
你的任务就是,计算gameboy在这一刻扣下扳机,能否爆土匪的头。注意:这里忽略子弹的直径和重力作用,也就是说子弹是无限小的,弹道是一条笔直的射线,警察与土匪间没有障碍物。并且只要子弹擦到头部,哪怕是边缘,也算爆头。
Input
测试数据的第一行有一个正整数T,表示有T组测试数据。每组数据的第一行有五个实数,h1,r1,x1,y1,z1,分别表示土匪的身高,头部半径以及所站的位置。第二行有八个实数,h2,r2,x2,y2,z2,x3,y3,z3,分别表示警察的身高,头部半径,所站位置,以及枪头所指方向的方向向量。
Output
每一组输入数据对应一行输出。如果能爆土匪的头,输出"YES",否则输出"NO"。
Sample Input
2 1.62 0.1 10.0 10.0 10.0 1.80 0.09 0.0 0.0 0.0 1.0 1.0 1.0 1.62 0.1 0.0 0.0 0.0 1.80 0.09 10.0 10.0 10.0 -1.0 -1.0 -1.0
Sample Output
YES YES
Author
lwg
水题一条……………………我既错误真系好无语,犯左小学生错误:
a - (b + c) = a - b + c

另外有一个Poiont就系"身高既90%“,所以应该先0.9 * h2再减去半径r2。
其他其实就系判断空间中一直线是否与一圆球相交既问题……其实即系比较圆心到直线既距离同埋半径既大小,可以用高中解释几何解delta,不过最好都系用3D向量运算。
下面代码:
4284349 | 2011-07-29 10:22:44 | Accepted | 1174 | 0MS | 248K | 702 B | C++ | 10SGetEternal{(。)(。)}! |
#include <iostream>
#include <cstdlib>
using namespace std;
#define sq(x) ((x) * (x))
int main()
{
int T;
double h1, r1, x1, y1, z1, h2, r2, x2, y2, z2, x3, y3, z3;
double xp, yp, zp, d, t, dt;
scanf("%d", &T);
while (T--)
{
scanf("%lf%lf%lf%lf%lf", &h1, &r1, &x1, &y1, &z1);
scanf("%lf%lf%lf%lf%lf", &h2, &r2, &x2, &y2, &z2);
scanf("%lf%lf%lf", &x3, &y3, &z3);
z1 += h1 - r1;
z2 += 0.9 * h2 - r2;
d = sq(x3) + sq(y3) + sq(z3);
t = (x3 * (x1 - x2) + y3 * (y1 - y2) + z3 * (z1 - z2)) / d;
xp = x3 * t + x2;
yp = y3 * t + y2;
zp = z3 * t + z2;
dt = sq(r1) - sq(xp - x1) - sq(yp - y1) - sq(zp - z1);
puts(dt >= 0? "YES": "NO");
}
return 0;
}
多谢收睇= =