POJ1836-Alignment(最长上升子序列)

**题意:删去最少的人,使得任何一个人能看到左右 任一 一边的尽头。
思路:从左边找一个最长上升子序列,从右边找一个最长上升子序列。这样两个序列 不交叉 的时候, 使得序列和最大即可。**

提供两种AC代码。不懂代码的请看这道题POJ3903

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
int dp1[1010], dp2[1010];
double a[1010];

int main()
{
    int N;
    while (cin >> N)
    {
        int pre=0, post=0;
        for (int i = 0; i < N; i++)
            scanf("%f", &a[i]);
        for (int i = 0; i < N; i++)
        {
            dp1[i] = 1;
            for (int j = 0; j < i; j++)
                if (a[i] > a[j])
                    dp1[i] = max(dp1[i], dp1[j]+1);
            pre = max(pre, dp1[i]);
        }
        for (int i = N-1; i >=0; i--)
        {
            dp2[i] = 1;
            for (int j = N-1; j > i; j--)
                if (a[i] > a[j])
                    dp2[i] = max(dp2[i], dp2[j]+1);
            post = max(post, dp2[i]);
        }
        int Max = 0;
        for (int i = 0; i < N; i++)
            for (int j = i + 1; j < N; j++)
                Max = max(Max,dp1[i] +dp2[j]);
        cout << N - Max << endl;    
    }

}



#include<cstdio>
#include<iostream>
#include<algorithm>
const float INF =1e6;
using namespace std;
double dp1[1010], dp2[1010];  //不要忘记修改为浮点型哦!
double a[1010];
int ans1[1010], ans2[1010];  //这个里面存放前后最长上升序列的长度。
int main()
{
    int N;
    while (cin >> N)
    {
        for (int i = 0; i < N; i++)
            scanf("%f", &a[i]);
        fill(dp1, dp1 + N, INF);
        for (int i = 0; i < N; i++)
        {
            *lower_bound(dp1, dp1 + N, a[i]) = a[i];
            ans1[i] = lower_bound(dp1, dp1 + N, INF) - dp1;

        }
       fill(dp2, dp2 + N, INF);
        for (int i = N-1; i >=0; i--)
        {
            *lower_bound(dp2, dp2 + N, a[i]) = a[i];
            ans2[i] = lower_bound(dp2, dp2 + N, INF) - dp2;
        }
        int Max = 0;
        for (int i = 0; i < N; i++)
            for (int j = i + 1; j < N; j++)
                Max = max(Max,ans1[i] +ans2[j]);
        cout << N - Max << endl;    
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值