POJ---1759(Garland,二分一个,求另一个的最优)

题意:

N个点,每个点离X轴的距离满足如下关系:
H1 = A
Hi = (H
i-1 + Hi+1)/2 - 1, for all 1 < i < N
HN = B
Hi >= 0, for all 1 <= i <= N

一直A,求B的最小值。

题解:

由递推关系式可以知道,确定H2,剩下的所有H都可以确定,二分求H2的最小,进而得出HN的最小即可。


#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<string>
#include<cstring>
#include<vector>
#include<functional>

using namespace std;
int maxl=1000;

int N;
double A,B,h[1005];

bool C(double mid)
{
    h[1]=mid;
    for(int i=2;i<N;i++)
    {
        h[i]=2*h[i-1]+2-h[i-2];
        if(h[i]<0)return false;

    }
    B=h[N-1];
    return true;
}

int main()
{
    cin>>N>>A;
    h[0]=A;


    //对第二个点进行二分
    double lb=-1,ub=maxl+2;

    for(int i=1;i<=100;i++)
    {
        double mid=(lb+ub)/2;
        if(C(mid))ub=mid;//最小化可行解
        else lb=mid;
    }
    printf("%.2f",B);//poj g++不能lf,C++可以lf  玄学!
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值