牛客周赛49(A~F)

A.嘤嘤不想做计几喵

题意:计算(a-b)-b*10

思路:水题,简单模拟下就行

ac代码:

/*    ʕ•̀ ω • ʔ  *˘︶˘*).。.:*♡ (∗ᵒ̶̶̷̀ω˂̶́∗)੭₎₎̊₊♡ (⋈◍>◡<◍)       ʕ•̫͡• ʔ•̫͡•ཻʕ•̫͡•ʔ•͓͡•ʔ.•♫•♬ •♬•♫•.✿.。.:* ☆ .:**:.☆*.:。.✿  *★°*:.☆:*.°★*
●▂● ●0● ●︿● ●ω● ●﹏● ●△● ●▽●   ♡⃝ ʜᴇʟʟᴏ •ᴗ• ☽⋆
     ∩  ∩        ̋(๑˃́ꇴ˂̀๑)   ᐕ)⁾⁾  *:ஐ (๑´ᵕ`) ஐ:* *ଘ(੭*ˊᵕˋ)੭* (੭ˊᵕˋ)੭* ੈ✩˚
  >(>_<)<
    I   I
    I   I     ʕง•ᴥ•ʔง
    IU UI
   I     I          ꉂꉂ꒰•̤▿•̤*ૢ꒱
≧▂≦ ≧0≦ ≧︿≦ ≧ω≦ ≧﹏≦ ≧△≦ ꒰๑˃͈꒵˂͈๑꒱
☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫
(~o▔▽▔)~o o~(▔▽▔o~)   ‿︵‿︵‿︵୨˚̣̣̣͙୧ - - - -୨˚̣̣̣͙୧‿︵‿︵‿︵
  */
#include<bits/stdc++.h>
using namespace std;
#define lll __int128
#define endl '\n'
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll,ll> PII;
const int mod=1e9+7;
inline ll read()
{
   ll x = 0, y = 1;
   char c = getchar();
   while (!isdigit(c))
   {
      if (c == '-')
         y = -1;
      c = getchar();
   }
   while (isdigit(c))
   {
      x = (x << 3) + (x << 1) + (c ^ 48);
      c = getchar();
   }
   return x *= y;
}
inline void write(ll x)
{
   if (x < 0)
      x = -x, putchar('-');
   ll sta[35], top = 0;
   do
      sta[top++] = x % 10, x /= 10;
   while (x);
   while (top)
      putchar(sta[--top] + '0');
}




void Miraitowa(){
   ll a, b;
   cin >> a >> b;
   ll res = (a - b) - b * 10;
   cout << res << endl;
}


int main(){
 ios::sync_with_stdio(false);
 cin.tie(0),cout.tie(0);
   // int t;
   // cin>>t;
   // while(t--)
      Miraitowa();
     return 0;
};


B.嘤嘤不想打怪兽喵

题意:有种魔法能将x分裂成两个x/2向下取整,问用多少次魔法能将x变为0

思路:通过模拟几个数可以发现他的过程最后像一颗完全满二叉树,魔法次数会分裂两个,所以两层有1个,三层有1+2个,四层有1+2+4个,则魔法次数为层数减一的等差数列和

ac代码:

/*    ʕ•̀ ω • ʔ  *˘︶˘*).。.:*♡ (∗ᵒ̶̶̷̀ω˂̶́∗)੭₎₎̊₊♡ (⋈◍>◡<◍)       ʕ•̫͡• ʔ•̫͡•ཻʕ•̫͡•ʔ•͓͡•ʔ.•♫•♬ •♬•♫•.✿.。.:* ☆ .:**:.☆*.:。.✿  *★°*:.☆:*.°★*
●▂● ●0● ●︿● ●ω● ●﹏● ●△● ●▽●   ♡⃝ ʜᴇʟʟᴏ •ᴗ• ☽⋆
     ∩  ∩        ̋(๑˃́ꇴ˂̀๑)   ᐕ)⁾⁾  *:ஐ (๑´ᵕ`) ஐ:* *ଘ(੭*ˊᵕˋ)੭* (੭ˊᵕˋ)੭* ੈ✩˚
  >(>_<)<
    I   I
    I   I     ʕง•ᴥ•ʔง
    IU UI
   I     I          ꉂꉂ꒰•̤▿•̤*ૢ꒱
≧▂≦ ≧0≦ ≧︿≦ ≧ω≦ ≧﹏≦ ≧△≦ ꒰๑˃͈꒵˂͈๑꒱
☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫
(~o▔▽▔)~o o~(▔▽▔o~)   ‿︵‿︵‿︵୨˚̣̣̣͙୧ - - - -୨˚̣̣̣͙୧‿︵‿︵‿︵
  */
#include <bits/stdc++.h>
using namespace std;
#define lll __int128
#define endl '\n'
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll> PII;
const int mod = 1e9 + 7;
inline ll read()
{
   ll x = 0, y = 1;
   char c = getchar();
   while (!isdigit(c))
   {
      if (c == '-')
         y = -1;
      c = getchar();
   }
   while (isdigit(c))
   {
      x = (x << 3) + (x << 1) + (c ^ 48);
      c = getchar();
   }
   return x *= y;
}
inline void write(ll x)
{
   if (x < 0)
      x = -x, putchar('-');
   ll sta[35], top = 0;
   do
      sta[top++] = x % 10, x /= 10;
   while (x);
   while (top)
      putchar(sta[--top] + '0');
}

void Miraitowa()
{

   ll h;
   cin >> h;
   ll res = 0;
   while(h) h /= 2, res++;
   ll sum = 0;
   for (int i = 0; i < res;i++)
      sum += (1ll << i);
   cout << sum << endl;
}

int main()
{
   ios::sync_with_stdio(false);
   cin.tie(0), cout.tie(0);
   // int t;
   // cin>>t;
   // while(t--)
   Miraitowa();
   return 0;
};

C.嘤嘤不想买东西喵

题意:有排成一排的n件商品,你可以任选一段子段和将价格变为x购买,问最多能省多少钱

思路:首先有n件商品,一开始每个商品都有自己的价钱a[i],当我选的一段子段和包含当前商品时就会变成x,省下的钱可以表示为a[i]-x,那么我们先将每件商品的价格减去x,则整个数组中元素表示为我选这个商品能省下多少钱,我要选一段使得我能省下的钱最多,是一道经典的最大子段和问题

ac代码:

/*    ʕ•̀ ω • ʔ  *˘︶˘*).。.:*♡ (∗ᵒ̶̶̷̀ω˂̶́∗)੭₎₎̊₊♡ (⋈◍>◡<◍)       ʕ•̫͡• ʔ•̫͡•ཻʕ•̫͡•ʔ•͓͡•ʔ.•♫•♬ •♬•♫•.✿.。.:* ☆ .:**:.☆*.:。.✿  *★°*:.☆:*.°★*
●▂● ●0● ●︿● ●ω● ●﹏● ●△● ●▽●   ♡⃝ ʜᴇʟʟᴏ •ᴗ• ☽⋆
     ∩  ∩        ̋(๑˃́ꇴ˂̀๑)   ᐕ)⁾⁾  *:ஐ (๑´ᵕ`) ஐ:* *ଘ(੭*ˊᵕˋ)੭* (੭ˊᵕˋ)੭* ੈ✩˚
  >(>_<)<
    I   I
    I   I     ʕง•ᴥ•ʔง
    IU UI
   I     I          ꉂꉂ꒰•̤▿•̤*ૢ꒱
≧▂≦ ≧0≦ ≧︿≦ ≧ω≦ ≧﹏≦ ≧△≦ ꒰๑˃͈꒵˂͈๑꒱
☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫
(~o▔▽▔)~o o~(▔▽▔o~)   ‿︵‿︵‿︵୨˚̣̣̣͙୧ - - - -୨˚̣̣̣͙୧‿︵‿︵‿︵
  */
#include<bits/stdc++.h>
using namespace std;
#define lll __int128
#define endl '\n'
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll,ll> PII;
const int mod=1e9+7;
inline ll read()
{
   ll x = 0, y = 1;
   char c = getchar();
   while (!isdigit(c))
   {
      if (c == '-')
         y = -1;
      c = getchar();
   }
   while (isdigit(c))
   {
      x = (x << 3) + (x << 1) + (c ^ 48);
      c = getchar();
   }
   return x *= y;
}
inline void write(ll x)
{
   if (x < 0)
      x = -x, putchar('-');
   ll sta[35], top = 0;
   do
      sta[top++] = x % 10, x /= 10;
   while (x);
   while (top)
      putchar(sta[--top] + '0');
}

const int N = 3e5 + 10;
ll a[N];

void Miraitowa(){
   int n, x;
   cin >> n >> x;
   for (int i = 1; i <= n;i++)
      cin >> a[i];
   for (int i = 1; i <= n;i++)
      a[i] -= x;
   ll num = 0, pre = 0;
   for (int i = 1; i <= n;i++){
      num = max(num + a[i], a[i]);
      pre = max(pre, num);
   }
   cout << pre << endl;
}


int main(){
 ios::sync_with_stdio(false);
 cin.tie(0),cout.tie(0);
   // int t;
   // cin>>t;
   // while(t--)
      Miraitowa();
     return 0;
};


D.嘤嘤不想求异或喵

题意:嘤嘤有两个整数l,r,他想知道l r所有整数的异或和是多少

分析:求异或和我们可以看每一位,每位之间互不影响,然后我们发现数字之间四个一组为一个循环节异或和为0

4k,4k+1,4k+2,4k+3最后两位异或为0,同时前面位数都相同异或为0,整体为0,那么我们先求1到 l 和1到

r 之间的异或和,l r之间的异或和通过再次异或1到 l-1之间的异或和得到

此时有四种情况,以r为例:

r%4==0 ,它为新循环节的开始,他与前面的0异或还是他本身,返回r

r%4==1 这个循环节有两个,前面的两两相等异或相同,后两位异或为1,则返回1

r%4==2 这个循环节有三个,前面的三个数都相同,但是两个异或已经是零了,那么前面为r前面的数,后两位为11,则返回r+1

r%4==3 这个循环节有四个为一组,返回0

ac代码:

/*    ʕ•̀ ω • ʔ  *˘︶˘*).。.:*♡ (∗ᵒ̶̶̷̀ω˂̶́∗)੭₎₎̊₊♡ (⋈◍>◡<◍)       ʕ•̫͡• ʔ•̫͡•ཻʕ•̫͡•ʔ•͓͡•ʔ.•♫•♬ •♬•♫•.✿.。.:* ☆ .:**:.☆*.:。.✿  *★°*:.☆:*.°★*
●▂● ●0● ●︿● ●ω● ●﹏● ●△● ●▽●   ♡⃝ ʜᴇʟʟᴏ •ᴗ• ☽⋆
     ∩  ∩        ̋(๑˃́ꇴ˂̀๑)   ᐕ)⁾⁾  *:ஐ (๑´ᵕ`) ஐ:* *ଘ(੭*ˊᵕˋ)੭* (੭ˊᵕˋ)੭* ੈ✩˚
  >(>_<)<
    I   I
    I   I     ʕง•ᴥ•ʔง
    IU UI
   I     I          ꉂꉂ꒰•̤▿•̤*ૢ꒱
≧▂≦ ≧0≦ ≧︿≦ ≧ω≦ ≧﹏≦ ≧△≦ ꒰๑˃͈꒵˂͈๑꒱
☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫
(~o▔▽▔)~o o~(▔▽▔o~)   ‿︵‿︵‿︵୨˚̣̣̣͙୧ - - - -୨˚̣̣̣͙୧‿︵‿︵‿︵
  */
#include <bits/stdc++.h>
using namespace std;
#define lll __int128
#define endl '\n'
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll> PII;
const int mod = 1e9 + 7;
inline ll read()
{
   ll x = 0, y = 1;
   char c = getchar();
   while (!isdigit(c))
   {
      if (c == '-')
         y = -1;
      c = getchar();
   }
   while (isdigit(c))
   {
      x = (x << 3) + (x << 1) + (c ^ 48);
      c = getchar();
   }
   return x *= y;
}
inline void write(ll x)
{
   if (x < 0)
      x = -x, putchar('-');
   ll sta[35], top = 0;
   do
      sta[top++] = x % 10, x /= 10;
   while (x);
   while (top)
      putchar(sta[--top] + '0');
}
ll cal(ll r)
{
    if (r % 4 == 1)
      return 1;
   else if (r % 4 == 2)
      return r + 1;
   else if (r % 4 == 3)
      return 0;

   return r;
}

void Miraitowa()
{

   ll l, r;
   cin >> l >> r;
   if (l == r)
      cout << l << endl;
   else
   {
      ll a = cal(r), b = cal(l - 1);
      cout << (a ^ b) << endl;
   }
}

int main()
{
   ios::sync_with_stdio(false);
   cin.tie(0), cout.tie(0);
   int t;
   cin >> t;
   while (t--)
      Miraitowa();
   return 0;
};

E.嘤嘤不想解方程

题意:求解y=a1x^2+b1x+c1和a2x+b2y+c2=0的联立方程的解的数量

思路:将y带入到第二个式子里,发现这式子变成了一个二次函数,二次函数的根的求解令y等于0

ac代码:

/*    ʕ•̀ ω • ʔ  *˘︶˘*).。.:*♡ (∗ᵒ̶̶̷̀ω˂̶́∗)੭₎₎̊₊♡ (⋈◍>◡<◍)       ʕ•̫͡• ʔ•̫͡•ཻʕ•̫͡•ʔ•͓͡•ʔ.•♫•♬ •♬•♫•.✿.。.:* ☆ .:**:.☆*.:。.✿  *★°*:.☆:*.°★*
●▂● ●0● ●︿● ●ω● ●﹏● ●△● ●▽●   ♡⃝ ʜᴇʟʟᴏ •ᴗ• ☽⋆
     ∩  ∩        ̋(๑˃́ꇴ˂̀๑)   ᐕ)⁾⁾  *:ஐ (๑´ᵕ`) ஐ:* *ଘ(੭*ˊᵕˋ)੭* (੭ˊᵕˋ)੭* ੈ✩˚
  >(>_<)<
    I   I
    I   I     ʕง•ᴥ•ʔง
    IU UI
   I     I          ꉂꉂ꒰•̤▿•̤*ૢ꒱
≧▂≦ ≧0≦ ≧︿≦ ≧ω≦ ≧﹏≦ ≧△≦ ꒰๑˃͈꒵˂͈๑꒱
☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫
(~o▔▽▔)~o o~(▔▽▔o~)   ‿︵‿︵‿︵୨˚̣̣̣͙୧ - - - -୨˚̣̣̣͙୧‿︵‿︵‿︵
  */
#include <bits/stdc++.h>
using namespace std;
#define lll __int128
#define endl '\n'
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll> PII;
const int mod = 1e9 + 7;
inline ll read()
{
   ll x = 0, y = 1;
   char c = getchar();
   while (!isdigit(c))
   {
      if (c == '-')
         y = -1;
      c = getchar();
   }
   while (isdigit(c))
   {
      x = (x << 3) + (x << 1) + (c ^ 48);
      c = getchar();
   }
   return x *= y;
}
inline void write(ll x)
{
   if (x < 0)
      x = -x, putchar('-');
   ll sta[35], top = 0;
   do
      sta[top++] = x % 10, x /= 10;
   while (x);
   while (top)
      putchar(sta[--top] + '0');
}

void Miraitowa()
{
    //ax^2+bx+c=0
   ll a1, b1, c1, a2, b2, c2;
   cin >> a1 >> b1 >> c1 >> a2 >> b2 >> c2;
   lll a = a1 * b2, b = a2 + b1 * b2, c = c2 + c1 * b2;

   if (a == 0)
   {
      if (b == 0)
      {
         if (c == 0)
            cout << "INF" << endl;   //当a,b,c都为0的时候,x有无数个解使得0==0
         else
            cout << 0 << endl;   // 当a,b等于0,c不等于0的时候,x没有一个解使得c==0
      }
      else
         cout << 1 << endl;   //当a==0,b!=0时,则变为一次函数,有一个解
   }
   else    // a不等于0,用求根公式求解
   {
      lll del = b * b - 4 * a * c;
      ll temp = 1;
      if (del > 0)   temp = 2;
      else if (del < 0)     temp = 0;
      cout << temp << endl;
   }
}

int main()
{
   ios::sync_with_stdio(false);
   cin.tie(0), cout.tie(0);
   int t;
   cin >> t;
   while (t--)
      Miraitowa();
   return 0;
};

F.嘤嘤不想找最小喵

题意:给你一个数组,请你找个最小的k,满足a[i]+a[i+2k]=2*a[i+k] 1<=i<=n-2k

思路:满足的式子是等差数列,因此我们需要找一个k使得长度为n的数组为等差数列,等差数列有一个性质,三个数之间满足等差数列,任意长度相连的数也满足等差数列,则我们可以用哈希前缀和求

ac代码:

/*    ʕ•̀ ω • ʔ  *˘︶˘*).。.:*♡ (∗ᵒ̶̶̷̀ω˂̶́∗)੭₎₎̊₊♡ (⋈◍>◡<◍)       ʕ•̫͡• ʔ•̫͡•ཻʕ•̫͡•ʔ•͓͡•ʔ.•♫•♬ •♬•♫•.✿.。.:* ☆ .:**:.☆*.:。.✿  *★°*:.☆:*.°★*
●▂● ●0● ●︿● ●ω● ●﹏● ●△● ●▽●   ♡⃝ ʜᴇʟʟᴏ •ᴗ• ☽⋆
     ∩  ∩        ̋(๑˃́ꇴ˂̀๑)   ᐕ)⁾⁾  *:ஐ (๑´ᵕ`) ஐ:* *ଘ(੭*ˊᵕˋ)੭* (੭ˊᵕˋ)੭* ੈ✩˚
  >(>_<)<
    I   I
    I   I     ʕง•ᴥ•ʔง
    IU UI
   I     I          ꉂꉂ꒰•̤▿•̤*ૢ꒱
≧▂≦ ≧0≦ ≧︿≦ ≧ω≦ ≧﹏≦ ≧△≦ ꒰๑˃͈꒵˂͈๑꒱
☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫☗♪叮☖叮♫ ☗铛♪ ☖♫
(~o▔▽▔)~o o~(▔▽▔o~)   ‿︵‿︵‿︵୨˚̣̣̣͙୧ - - - -୨˚̣̣̣͙୧‿︵‿︵‿︵
  */
#include<bits/stdc++.h>
using namespace std;
#define lll __int128
#define endl '\n'
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll,ll> PII;
const int mod=1e9+7;
inline ll read()
{
   ll x = 0, y = 1;
   char c = getchar();
   while (!isdigit(c))
   {
      if (c == '-')
         y = -1;
      c = getchar();
   }
   while (isdigit(c))
   {
      x = (x << 3) + (x << 1) + (c ^ 48);
      c = getchar();
   }
   return x *= y;
}
inline void write(ll x)
{
   if (x < 0)
      x = -x, putchar('-');
   ll sta[35], top = 0;
   do
      sta[top++] = x % 10, x /= 10;
   while (x);
   while (top)
      putchar(sta[--top] + '0');
}

const int N = 5e5 + 10;
ull p[N], h[N];
int n;


 ull get(ll l,ll r){
    return h[r] - h[l - 1] * p[r - l + 1];
 }


void Miraitowa(){
   cin >> n;
   p[0] = 1;
   for (int i = 1; i <= n;i++){
      ll x;
      cin >> x;
      p[i] = p[i - 1] * 13331;
      h[i] = h[i - 1] * 13331 + x;
   }
//要包含数组中所有的点,则第一个点为左边点能取到的范围,第二个为中间的点取到的范围,第三个为右边的点取到的范围
   for (int i = 1; i <= n;i++)
  if((get(1,n-2*i)-get(1+i,n-i))==(get(1+i,n-i)-get(1+2*i,n))){
     cout << i << endl;
     return;
  }    
}


int main(){
 ios::sync_with_stdio(false);
 cin.tie(0),cout.tie(0);
   // int t;
   // cin>>t;
   // while(t--)
      Miraitowa();
     return 0;
};


牛客 a卷2022年第四季度的华为题目中,要求考生设计一种高效的数据结构,能够支持以下几种操作: 1. 添加一个元素 2. 删除一个元素 3. 查找是否存在某个元素 4. 返回元素的总数 该数据结构要求满足空间复杂度较小、时间复杂度较低、能够快速地进行查找和修改等多种操作。 想要编写这样一种数据结构,我们可以参考许多已有的经典算法数据结构,如二叉树、哈希表、红黑树等,通过综合利用它们的优点来实现这个问题的解决。 例如,我们可以通过哈希表来存储所有元素的值,并在每个哈希链表的元素中再使用红黑树来进行排序与查找。这样,我们既能够轻松地进行元素的添加和删除操作,也能够在查找较大数据范围和数量时保持较高的速度与效率。同时,由于使用了多个数据结构来协同完成这个问题,我们也能够在空间复杂度上适度地进行优化。 当然,在具体设计这个数据结构的过程中,我们还需要考虑一些实践中的细节问题,例如如何避免哈希冲突、如何处理数据丢失与被删除元素所占用的空间等问题,这都需要相应的算法与流程来进行处理。 总体来看,设计这种支持多种操作的高效数据结构,需要我们具备丰富的算法知识和编程实践能力,同时需要我们在具体处理问题时能够将多种算法数据结构进行有效地结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值