HDU 4521 LIS变形 简单dp 线段树 单点更新 区间最值

传送门:题目

题意:

给一个由n个数组成的序列,然后从左到右取一些数组成一个新序列,这个新序列满足一些条件:

  • 新序列是递增的
  • 原序列取得过程中,相邻两个元素的位置间隔至少为d
  • 原序列的个数尽可能多

题解:

第一个条件明显是LIS,第二个题目告诉我们这道题是LIS的变形,说是变形,其实就改了一点,我们在求普通LIS的时候,dp[i]=dp[i-1]+1,这道题:dp[i]=dp[i-d-1]+1就好了。然后第三个条件,就是把所有满足条件的LIS都求出来,然后取个最大值就好了。
数据范围 105 10 5 ,我们在求dp的时候不能 n2 n 2 搜索了,要加个线段树,单点更新,区间最值 。

AC代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#define debug(x) cout<<#x<<" = "<<x<<endl;
#define INF 0x3f3f3f3f
using namespace std;

const int maxn = 110000;
int dp[maxn], a[maxn];
/******************线段树模板**********************/
int SegTree[maxn * 4];
void BuildTree(int l, int r, int rt) {//建树,lr是总区间,rt是根结点一般为1
    if (l == r) {
        SegTree[rt] = 0; //初始化叶节点
        return ;
    }
    int m = (l + r) >> 1;
    BuildTree(l, m, rt << 1);
    BuildTree(m + 1, r, rt << 1 | 1);
    SegTree[rt] = SegTree[rt << 1] + SegTree[rt << 1 | 1];
}
int Query(int L, int R, int l, int r, int rt) {//区间查询,LR是查询区间,lr是总区间,rt是根结点一般为1
    if (L > R)//注意这里,我第一开始没加,一直MLE
        return 0;
    if (l >= L && r <= R)
        return SegTree[rt];
    int m = (l + r) >> 1;
    int ans1 = 0, ans2 = 0;
    if (L <= m)
        ans1 = Query(L, R, l, m, rt << 1);
    if (R > m)
        ans2 = Query(L, R, m + 1, r, rt << 1 | 1);
    return max(ans1, ans2);
}
void Update(int point, int value, int l, int r, int rt) {//单点更新,把point点的值改为value,lr是总区间,rt是根结点一般为1
    if (l == r) {
        SegTree[rt] = max(value, SegTree[rt]);
        return;
    }
    int m = (l + r) >> 1;
    if (point <= m)
        Update(point, value, l, m, rt << 1);
    else
        Update(point, value, m + 1, r, rt << 1 | 1);
    SegTree[rt] = max(SegTree[rt << 1] , SegTree[rt << 1 | 1]);
}
/******************线段树模板**********************/
int main(void) {
    int n, d;
    while (cin >> n >> d) {
        memset(dp, 0, sizeof dp);
        int mmax = 0, ans = 0;
        for (int i = 1; i <= n; i++)
            cin >> a[i], ++a[i], mmax = max(mmax, a[i]);
        BuildTree(1, mmax, 1);
        for (int i = 1; i <= n; i++) {
            if (i - d - 1 >= 1)
                Update(a[i - d - 1], dp[i - d - 1], 1, mmax, 1);
            dp[i] =  Query(1, a[i] - 1, 1, mmax, 1) + 1;
            ans = max(dp[i], ans);
        }
        cout << ans << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值