HDU 4521 LIS变形 简单dp 线段树 单点更新 区间最值

传送门:题目

题意:

给一个由n个数组成的序列,然后从左到右取一些数组成一个新序列,这个新序列满足一些条件:

  • 新序列是递增的
  • 原序列取得过程中,相邻两个元素的位置间隔至少为d
  • 原序列的个数尽可能多

题解:

第一个条件明显是LIS,第二个题目告诉我们这道题是LIS的变形,说是变形,其实就改了一点,我们在求普通LIS的时候,dp[i]=dp[i-1]+1,这道题:dp[i]=dp[i-d-1]+1就好了。然后第三个条件,就是把所有满足条件的LIS都求出来,然后取个最大值就好了。
数据范围 105 10 5 ,我们在求dp的时候不能 n2 n 2 搜索了,要加个线段树,单点更新,区间最值 。

AC代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#define debug(x) cout<<#x<<" = "<<x<<endl;
#define INF 0x3f3f3f3f
using namespace std;

const int maxn = 110000;
int dp[maxn], a[maxn];
/******************线段树模板**********************/
int SegTree[maxn * 4];
void BuildTree(int l, int r, int rt) {//建树,lr是总区间,rt是根结点一般为1
    if (l == r) {
        SegTree[rt] = 0; //初始化叶节点
        return ;
    }
    int m = (l + r) >> 1;
    BuildTree(l, m, rt << 1);
    BuildTree(m + 1, r, rt << 1 | 1);
    SegTree[rt] = SegTree[rt << 1] + SegTree[rt << 1 | 1];
}
int Query(int L, int R, int l, int r, int rt) {//区间查询,LR是查询区间,lr是总区间,rt是根结点一般为1
    if (L > R)//注意这里,我第一开始没加,一直MLE
        return 0;
    if (l >= L && r <= R)
        return SegTree[rt];
    int m = (l + r) >> 1;
    int ans1 = 0, ans2 = 0;
    if (L <= m)
        ans1 = Query(L, R, l, m, rt << 1);
    if (R > m)
        ans2 = Query(L, R, m + 1, r, rt << 1 | 1);
    return max(ans1, ans2);
}
void Update(int point, int value, int l, int r, int rt) {//单点更新,把point点的值改为value,lr是总区间,rt是根结点一般为1
    if (l == r) {
        SegTree[rt] = max(value, SegTree[rt]);
        return;
    }
    int m = (l + r) >> 1;
    if (point <= m)
        Update(point, value, l, m, rt << 1);
    else
        Update(point, value, m + 1, r, rt << 1 | 1);
    SegTree[rt] = max(SegTree[rt << 1] , SegTree[rt << 1 | 1]);
}
/******************线段树模板**********************/
int main(void) {
    int n, d;
    while (cin >> n >> d) {
        memset(dp, 0, sizeof dp);
        int mmax = 0, ans = 0;
        for (int i = 1; i <= n; i++)
            cin >> a[i], ++a[i], mmax = max(mmax, a[i]);
        BuildTree(1, mmax, 1);
        for (int i = 1; i <= n; i++) {
            if (i - d - 1 >= 1)
                Update(a[i - d - 1], dp[i - d - 1], 1, mmax, 1);
            dp[i] =  Query(1, a[i] - 1, 1, mmax, 1) + 1;
            ans = max(dp[i], ans);
        }
        cout << ans << endl;
    }
    return 0;
}
内容概要:本文详细介绍了软考高项(高级信息系统项目管理师)的备考策略、考试内容及应试技巧。首先,文章强调了二八法则的应用,即80%的时间精力应放在项目管理领域的核心知识点上,如五大过程组、十大知识域等,20%的时间放在IT知识和组织级项目管理上。备考分为三个阶段:基础阶段通过精读教材、绘制思维导图夯实基础;强化阶段通过真题训练、案例分析提升实战能力;冲刺阶段通过论文押题、模拟考试做好后准备。文章还特别指出,计算题和论文写作是考试的重点和难点,需重点练习。此外,针对不同地区的考生,提供了差异化的备考建议,如一线城市侧重新技术应用,中西部地区关注乡村振兴信息化等。后,文章提醒考生关注机考模拟系统的开放时间和准考证打印时间,确保顺利参加考试。 适合人群:准备参加软考高项考试的考生,特别是有一定项目管理基础并希望系统复习、提高应试能力的考生。 使用场景及目标:①帮助考生高效利用有限时间,集中精力复习核心知识点;②通过模拟练习和真题训练,提升计算题和论文写作的能力;③结合实际案例,掌握项目管理全流程知识,提高考试通过率。 其他说明:备考过程中,考生应结合自身实际情况,灵活调整学习计划。同时,充分利用各种学习资源,如精讲课视频、直播课、历年真题等,不断巩固和深化对知识点的理解。考试改革后,机考成为主流,考生需提前熟悉机考系统,确保考试时能够熟练操作。
内容概要:本文详细介绍了利用Simulink构建四台永磁同步电机(PMSM)偏差耦合同步控制系统的方法及其优化策略。首先阐述了多电机同步控制在工业自动化中的重要性和应用场景,如AGV小车底盘驱动、传送带协同等。接着深入探讨了偏差耦合控制的具体实现方式,包括环形耦合结构的设计、耦合补偿算法以及PID参数调整方法。文中特别强调了耦合系数的选择对于系统稳定性的影响,并提供了具体的MATLAB函数用于计算各电机之间的耦合补偿量。此外,还讨论了如何通过动态权重分配算法来增强相邻电机间的耦合关系,从而提高同步速度。同时,针对可能出现的问题提出了预防措施,如避免使用微分环节、设置合理的摩擦系数和采样周期等。后分享了一些实践经验,例如采用在线参数辨识技术和低通滤波器以应对负载突变等情况。 适用人群:从事工业自动化领域的工程师和技术人员,尤其是那些对多电机同步控制感兴趣的读者。 使用场景及目标:适用于需要精确控制多个电机同步运行的场合,如生产线上多轴协调动作、机器人关节控制等。主要目的是确保各个电机能够按照预定的速度平稳地协同工作,减少由于不同步造成的故障风险。 其他说明:文章不仅提供了理论指导,还包括了许多实用的操作技巧和注意事项,有助于读者更好地理解和掌握这一复杂的控制技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值