关于如何快速更改CUDA版本 之 用Anaconda虚拟环境解决问题

通过配置Anaconda虚拟环境的CUDA版本的方式,我们可以在同一台电脑上安装多个CUDA版本。

Anaconda虚拟环境安装CUDA具体是通过conda命令安装cudatoolkit来实现,可以将cudatoolkit看成conda版的cuda。(参考了博文cuda环境配置(anaconda虚拟环境版,含pytorch-gpu安装)_anaconda安装cuda-CSDN博客

这就可以根据不同的需要,配置不同的cuda环境了。

conda install cudatoolkit=11.8.0(比如11.8.0版本)

Anaconda虚拟环境安装的cudatoolkit的版本要小于或等于电脑的CUDA版本(可以通过在终端输入如下指令查看)

nvcc -V

第四行末尾release 版本号,表示目前电脑上安装的CUDA的发行版本号。

这个地方插一句话:Anaconda的虚拟环境的python版本没有限制,不一定非要小于或等于解释器的python版本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值