cuda环境配置(anaconda虚拟环境版,含pytorch-gpu安装)

一、背景

cuda可以直接装到电脑上,但是安装步骤复杂,且失败率较高。选择anaconda虚拟环境安装,操作简单,且可以结合pytorch、tensorflow等深度学习框架的不同版本,安装不同的版本的cuda,各个虚拟环境互不干扰,也可以一键删除。

二、anaconda虚拟环境创建

anaconda安装配置十分简单可自行查找教程,包括环境变量和镜像源配置。
打开cmd命令行(anaconda已放到环境变量)或者Anaconda PowershellPrompt(如下图):
在这里插入图片描述

输入 conda create -n test python=3.8

‘’test‘’为虚拟环境名词,可以自动定义。python版本可以结合自己的环境需求,自行修改,这里用python3.8。
在这里插入图片描述

输入y回车,等到运行完毕。输入conda env list,我们可以看到虚拟环境tese已创建完毕,环境名称后面是所在的路径,便于在pycharm等IDE中导入。

在这里插入图片描述
环境创建好后,需要进入虚拟环境,输入conda activate test回车:

在这里插入图片描述

可以看到环境由base变为test,表示已经进入test虚拟环境。下一步就是安装cuda和cudnn。

三、cuda+cudnn安装

1.cuda版本查询

打开命令行,输入nvidia-smi
在这里插入图片描述
如图,CUDA Version后面的就是电脑显卡可支持的cuda版本,所以我们要装的cuda版本需要<=12.4(可向下兼容)。如果输入nvidia-smi,表示命令不存在,则说明电脑没有安装显卡驱动,显卡驱动安装可参考如何在windows上 安装&更新 显卡的驱动

2.cudatoolkit安装

在Anaconda虚拟环境安装cuda就是通过conda命令安装cudatoolkit来实现,可以将cudatoolkit看成conda版的cuda,想具体了解cuda和cudatoolkit直接的区别,请参考一文讲清楚CUDA、CUDA toolkit、CUDNN、NVCC关系
打开Anaconda命令行,进入我们创建好的虚拟环境(一定要进入虚拟环境!!!),输入conda search cudatoolkit --info,查看cudatoolkit已有的安装包版本。
在这里插入图片描述
我们可以看到各种版本的cudatoolkit,最高版本为11.8.0,因为我的最高支持12.4,所以我们安装11.8.0,安装命令为conda install cudatoolkit=11.8.0(这里用conda命令安装),回车,运行成功之后,再安装cudnn,直接使用conda install cudnn回车。这样我们的cuda环境就配置完毕了。

四、pytorch-gpu安装

1.安装

进入pytorch官网安装页面在这里插入图片描述
选择和你环境相配的选项,复制conda命令到anaconda虚拟环境的命令行页面,回车即可。如果你所要运行的项目对pytorch版本有严格要求,可以点击如图所示的地方:在这里插入图片描述

进入如下页面,选择你所装的cuda版本下的和你想要的pytorch版本,进行命令安装。(一定要对应你的cuda的版本!!!,可适当向下兼容,但不要相差太大)
在这里插入图片描述

2.验证pytorch-gpu是否安装成功

在虚拟环境下,输入python,进入python命令行,
先导入torch库,import torch,再输入torch.cuda.is_available()

在这里插入图片描述

如图返回True,证明你的pytorch-gpu版本安装成功了。

### 如何在Python虚拟环境安装配置CUDA #### 创建特定本的Conda虚拟环境 为了确保不同项目之间的依赖项不会冲突,建议使用`conda`创建独立的虚拟环境。这允许针对每个项目定制化设置CUDA和cuDNN本。 ```bash conda create --name my_cuda_env python=3.8 ``` 激活新建的环境: ```bash conda activate my_cuda_env ``` #### 安装CUDA工具包和cuDNN 一旦进入目标环境后,可以通过`conda install`命令来获取指定本的CUDA toolkit以及配套的cuDNN库文件。这里假设要安装的是CUDA 10.2及其相应的cuDNN本作为例子[^1]。 ```bash conda install cudatoolkit=10.2 -c nvidia ``` 对于某些特殊情况可能还需要手动调整环境变量以指向正确的路径,比如当存在多个CUDA本共存的情况下。此时可以在脚本开头加入如下代码片段以便程序能够找到合适的驱动位置[^5]: ```python import os os.environ["PATH"] += os.pathsep + r"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin" os.environ["LD_LIBRARY_PATH"] = r"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\lib\x64" ``` 注意上述路径需根据实际安装情况进行修改适应本地情况。 #### 验证安装成功与否 完成以上步骤之后应该验证一下是否真的能正常使用GPU资源。可以编写一小段测试代码来进行确认: ```python from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) ``` 如果一切正常,则会看到有关可用设备的信息列表中包GPU条目;反之则说明可能存在配置错误或其他兼容性问题需要进一步排查解决[^4]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值