llms.txt,一种新的知识库文件存储方式#应该如何给不同的网站设计llms.txt ?

llms.txt,一种新的知识库文件存储方式,为什么这么说?

“llms txt”是指为大语言模型(LLMs)量身定制的网站信息标准提案。/llms.txt 文件是一个包含简要背景信息、指导和详细 markdown 文件,帮助 LLMs 更容易访问和理解网站内容。

这个提案旨在解决 LLMs 在处理复杂网页时的限制,如上下文窗口小和将 HTML 转换为纯文本的困难。通过提供简洁结构化的文件,可以帮助 LLMs 快速检索相关信息。

https://llmstxt.org

—— 

提案是针对网站提出的,但我认为可以拓展到更多场景里,比如知识管理、本地文件、甚至是微信群聊信息。( 如果你正在考虑如何使用 AI 编程来构建自己的知识管理工具,欢迎报名我们的 N10 训练营(广州场)

如何设计 llms.txt 文件?

shadow:不同网站的llms txt文件应该如何设计才更容易让llm读懂?请给我一个完善的解决方案。如果需要采用代码来辅助生产llms txt文件,请帮我也考虑进去。

Claude:

为什么需要这种txt文件:

  1. 通常,LLM需要从不同网站抓取和处理文本数据

  2. 将网站内容转换为易于LLM理解和处理的格式是很重要的

  3. 不同网站有不同的结构和内容组织方式,需要一个通用但可定制的解决方案

文件格式设计:

  • 结构化的文本格式

  • 元数据和内容分离

  • 一致的分隔符和标记

[META]TITLE: 网页标题URL: 网页URLTIMESTAMP: 抓取时间戳SOURCE: 来源网站名称LANGUAGE: 内容语言TYPE: 内容类型(文章、产品、新闻等)[/META]
[CONTENT]# 主标题
## 小标题1段落内容...
## 小标题2段落内容...
[LIST]- 列表项1- 列表项2[/LIST]
[TABLE]表头1 | 表头2 | 表头3内容1 | 内容2 | 内容3[/TABLE][/CONTENT]
[SUMMARY]内容摘要或关键点...[/SUMMARY]

这种结构有几个优点:

  • 明确的元数据部分,包含来源和上下文信息

  • 结构化的内容部分,保留了原文的层次结构

  • 特殊内容(如列表、表格)有明确标记

  • 可选的摘要部分,便于LLM快速理解内容重点

Grok:

文件结构建议

一个易于LLM理解的TXT文件应包含以下结构化部分:

a. 标题

用简短的文字概括文件主题,例如“网站A的LLMs TXT指南”。

b. 摘要

提供内容的简要概述,例如“本文档介绍如何优化网站A的TXT文件以适配LLM”。

c. 目录

列出主要章节标题,帮助LLM快速导航。

d. 正文

章节:按主题划分内容,例如“设计原则”“实施步骤”。

子章节:在章节内进一步细化,例如“清晰性”“结构化”。

段落:每段聚焦一个核心思想,使用过渡句连接。

e. 参考资料

列出相关来源或链接,提供额外上下文。

f. 附录

包含术语表、补充说明等辅助信息。

这种结构化的布局让LLM能够按顺序解析内容,避免信息混乱。

适应不同网站不同网站可能有独特需求,例如:

电商网站:强调产品描述的简洁性和关键词。

技术博客:需要更多术语定义和代码示例。

新闻网站:突出事件的时间顺序和事实概述。

在实施时,可调整章节内容或格式以匹配具体需求。例如,为电商网站添加“产品规格”章节。

Gemini:

为了让大型语言模型(LLM)更容易理解和处理来自不同网站的 .txt 文件,关键在于提供清晰、一致的结构和元数据。

在每个 .txt 文件的开头,包含一组清晰的元数据,使用键值对的形式,每行一个。这有助于 LLM 快速了解文本的基本信息。

[元数据开始]来源URL: [网页的原始URL]网站名称: [网站的名称,例如:Wikipedia, BBC News]页面标题: [网页的 <title> 标签内容]抓取日期: [YYYY-MM-DD]内容类型: [例如:新闻文章, 博客帖子, 产品页面, 论坛讨论, 教程]作者: [如果可用]发布日期: [如果可用,YYYY-MM-DD][元数据结束]--- (分隔符)
示例 .txt 文件结构:
[元数据开始]来源URL: https://example.com/news/article-123网站名称: Example News页面标题: 关于 LLM 的最新研究进展抓取日期: 2025-04-08内容类型: 新闻文章发布日期: 2025-04-07[元数据结束]---# 关于 LLM 的最新研究进展## 引言本文将探讨近期在大型语言模型 (LLM) 领域取得的一些重要突破。## 主要发现研究表明,新的训练方法显著提高了模型的效率。* **效率提升:** 训练时间缩短了 20%。* **能力增强:** 在特定任务上的表现提高了 15%。**关键数据点** 显示了模型的潜力。## 技术细节### 模型架构采用了基于 Transformer 的改进架构。[代码块开始: pseudocode]model = ImprovedTransformer(...)tokenizer = CustomTokenizer(...)[代码块结束]### 数据集使用了包含 10T token 的高质量数据集。## 结论LLM 的未来发展前景广阔,但仍需解决 **伦理问题** 和 **计算资源** 的挑战。更多信息请访问:https://research.example.com---[文件结束]

为什么这样设计?

  • 结构化: 清晰的元数据和章节标记帮助 LLM 理解上下文和内容组织。

  • 语义化: 标题、列表等标记提供了内容的语义信息。

  • 一致性: 跨不同网站采用统一格式,便于 LLM 进行批量处理和比较。

  • 简洁性: 去除噪音,保留核心信息,减少 LLM 的处理负担。

遵循这些规范,可以显著提高 LLM 对 .txt 文件内容的理解准确性和效率。

——

shadow:

我把Grok、Claude、Gemini的回答都挑选了比较关键的建议,并且标注了重点。总结下:

语义化标记

一致的结构、元数据

针对不同网站,增加特殊段落(比如电商的产品规格)

适当增加摘要部分

基于这个原则,可以制作一个 llms.txt 的 MCP Server ,通过prompt提供统一的提炼和整理信息的要求和输出格式标准。

可以处理网站或者本地文件,作为LLM时代的“新型”知识库。

当涉及到处理网站,llms.txt MCP 需要连接 use-brower MCP ,一个有趣的新话题产生了,在一个 MCP Server 里实现 Client ,再连接到另一个 Server 。Server 里的 Client 也是有2种连接模式可选,在哪里配置 Client 应该怎么连接新的 Server ?接上之后,新的Server的tool或者prompt又怎么和Server的接上?

:欢迎加入 Mixlab 社群

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值