最近看到一篇文章,很多人还停留在人工智能是工具的认知,实际上,人工智能是新型的劳动力,正在发生。
人工智能即劳动力,是组织增长和创新的新引擎。领导者需转变思维,视其为可领导、可扩展的劳动力,而非简单工具,以抓住未来机遇。
快速了解这篇文章的核心思想:
10条金句
- 核心转变:
将人工智能视为劳动力,而非仅仅是软件工具。
- 提示即任务:
将提示(Prompts)理解为分配给人工智能劳动力的具体工作指令。
- 聊天即接口:
企业聊天平台是人与人工智能劳动力市场交互、分配任务的核心界面。
- 价值衡量:
通过“劳动力-Token交换”(Labor-to-Token Exchange)来理解和衡量人工智能劳动的成本与价值。
- 超越自动化:
人工智能劳动的更大价值在于放大组织能力和创新,而非简单替代人力。
- 赋能全体员工:
将领导人工智能的能力普及到每位员工,激发全员创新潜力。
- 架构解耦:
解耦人工智能劳动力市场的四个关键层(接口、模型/代理、API集成、监督),避免供应商锁定,保持灵活性。
Token 到计算:
利用人工智能将自然语言转化为精确的计算指令(如代码、查询),实现高效、规模化的任务执行。
- 提示能力是新素养:
掌握有效的提示工程、问题分解是未来工作的基本能力。
- 关注高杠杆应用:
优先将人工智能劳动力应用于能显著提升高价值岗位(如高管、专家)效能的任务上。
架构
企业聊天 (Enterprise Chat) Chat UI
模型/代理 (The Model / Agent) LLM、Agent
API 集成 (The API Integration) MCP
监督与优化 (Oversight and Optimization) 仪表盘
投资回报率
投资回报率 (ROI) = (V * R) / (Ch + Ct + Ca)
一个简化的测算模型,其中每次劳动力-Token交换都使用以下变量进行评估:
V = 交换产出的价值 (Value of the Exchange Output)
– 产出在驱动决策、行动或结果方面的价值有多大?
Ch = 人工监督成本 (Human Oversight Cost)
– 需要多少人力时间和专业知识来监督、验证或纠正人工智能?
Ct = 代币 + 模型成本 (Token + Model Cost)
– 交换本身的成本是多少(代币、API 调用、按席位供应商成本)?
Ca = 组装与整合成本 (Assembly & Integration Cost)
– 将产出转移或拼接到可用系统或工作流中需要多少人力或自动化工作?
R = 风险折扣 (Risk Discount)
– 代表对准确性、完整性、可解释性以及失败影响的信心(范围从 0 到 1)。
领取全文中文翻译版PDF:
备注:agent 交流群
原文:White, Jules. The AI Labor Playbook: How to Build, Lead, and Scale Generative AI in Your Organization. Generative AI Innovation Network,15 Apr. 2025.