什么是redis?
Redis 是一个基于内存的高性能key-value数据库。 (有空再补充,有理解错误或不足欢迎指正)
Reids的特点
Redis本质上是一个Key-Value类型的内存数据库,很像memcached,整个数据库统统加载在内存当中进行操作,定期通过异步操作把数据库数据flush到硬盘上进行保存。
优点:
(1)速度快,每秒可以处理超过 10万次读写操作,是已知性能最快的Key-Value DB。
(2)单个value的最大限制是1GB,不像 memcached只能保存1MB的数据,因此Redis可以用来实现很多有用的功能,比方说用他的List来做FIFO双向链表,实现一个轻量级的高性 能消息队列服务,用他的Set可以做高性能的tag系统等等。
(3)支持保存多种数据结构
(4)可以对存入的Key-Value设置expire(到期)时间,过期后将会自动删除
(5)支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行,redis的基本事物需要用到MULTI、EXEC 命令,这种事物可以让一个客户端在不被其他客户端打断的情况下执行多个命令,在redis里,被MULTI和EXEC命令包围的所有命令会一个接一个的执行,直到所有的命令都执行完毕为止,当一个事物执行完毕的时候,redis才会处理其他客户端的命令。
缺点:
数据库容量受到物理内存的限制,不能用作海量数据的高性能读写,因此Redis适合的场景主要局限在较小数据量的高性能操作和运算上。
Redis支持的数据类型
Redis通过Key-Value的单值不同类型来区分, 以下是支持的类型:
-
(字符串)Strings
-
(列表) Lists:redis支持链表结构,使得可执行的操作和很多编程里面的列表操作非常相似,如LPUSH,RPUSH命令分别将元素推入列表的左端和右端,LPOP,RPOP命令分别用于从列表的左端和右端弹出元素等。
-
(集合)Sets 用户可以用SISMEMBER命令快速的检查一个元素是否已经存在于集合中
-
(有序集合)Sorted Set
-
(散列)hashes
为什么redis需要把所有数据放到内存中?
Redis为了达到最快的读写速度将数据都读到内存中,并通过异步的方式将数据写入磁盘。所以redis具有快速和数据持久化的特征。如果不将数据放在内存中,磁盘I/O速度为严重影响redis的性能。在内存越来越便宜的今天,redis将会越来越受欢迎。
如果设置了最大使用的内存,则数据已有记录数达到内存限值后不能继续插入新值。
Redis是单进程单线程的
redis利用队列技术将并发访问变为串行访问,消除了传统数据库串行控制的开销
Redis分布式
redis支持主从的模式。原则:Master会将数据同步到slave,而slave不会将数据同步到master。Slave启动时会连接master来同步数据。典型的分布式读写分离模型:我们可以利用master来插入数据,slave提供检索服务。这样可以有效减少单个机器的并发访问数量。
读写分离模型
通过增加Slave DB的数量,读的性能可以线性增长。为了避免Master DB的单点故障,集群一般都会采用两台Master DB做双机热备,所以整个集群的读和写的可用性都非常高。
读写分离架构的缺陷在于,不管是Master还是Slave,每个节点都必须保存完整的数据,如果在数据量很大的情况下,集群的扩展能力还是受限于单个节点的存储能力,而且对于Write-intensive类型的应用,读写分离架构并不适合。
数据分片模型
为了解决读写分离模型的缺陷,可以将数据分片模型应用进来。
可以将每个节点看成都是独立的master,然后通过业务实现数据分片。
结合上面两种模型,可以将每个master设计成由一个master和多个slave组成的模型。
Redis的回收策略
volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
no-enviction(驱逐):禁止驱逐数据
redis常见性能问题和解决方案:
-
Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件
-
如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次
-
为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内
-
尽量避免在压力很大的主库上增加从库
-
主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...
这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。
MySQL里有2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据
相关知识:redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。
redis 提供 6种数据淘汰策略,上文已经列出。
Memcache与Redis的区别都有哪些?
1)、存储方式
Memecache把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。
Redis有部份存在硬盘上,这样能保证数据的持久性。
2)、数据支持类型
Memcache对数据类型支持相对简单。
Redis有复杂的数据类型。
3)、使用底层模型不同
它们之间底层实现方式 以及与客户端之间通信的应用协议不一样。
Redis直接自己构建了VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求。
4)、value大小
redis最大可以达到1GB,而memcache只有1MB
Redis 常见的性能问题都有哪些?如何解决?
1).Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以Master最好不要写内存快照。
2).Master AOF持久化,如果不重写AOF文件,这个持久化方式对性能的影响是最小的,但是AOF文件会不断增大,AOF文件过大会影响Master重启的恢复速度。
Master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久化,如果数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。
3).Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂服务暂停现象。
4). Redis主从复制的性能问题,为了主从复制的速度和连接的稳定性,Slave和Master最好在同一个局域网内
redis 最适合的场景
Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-backed的功能,跟传统意义上的持久化有比较大的差别。那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,那么何时使用Memcached,何时使用Redis呢?
一:缓存
(1)、热数据
热点数据(经常会被查询,但是不经常被修改或者删除的数据),首选是使用redis缓存,毕竟强大到冒泡的QPS和极强的稳定性不是所有类似工具都有的,而且相比于memcached还提供了丰富的数据类型可以使用,另外,内存中的数据也提供了AOF和RDB等持久化机制可以选择,要冷、热的还是忽冷忽热的都可选。
结合具体应用需要注意一下:很多人用spring的AOP来构建redis缓存的自动生产和清除,过程可能如下:
-
Select 数据库前查询redis,有的话使用redis数据,放弃select 数据库,没有的话,select 数据库,然后将数据插入redis
-
update或者delete数据库钱,查询redis是否存在该数据,存在的话先删除redis中数据,然后再update或者delete数据库中的数据
上面这种操作,如果并发量很小的情况下基本没问题,但是高并发的情况请注意下面场景:
为了update先删掉了redis中的该数据,这时候另一个线程执行查询,发现redis中没有,瞬间执行了查询SQL,并且插入到redis中一条数据,回到刚才那个update语句,这个悲催的线程压根不知道刚才那个该死的select线程犯了一个弥天大错!于是这个redis中的错误数据就永远的存在了下去,直到下一个update或者delete。
(2)、会话缓存(Session Cache)
最常用的一种使用Redis的情景是会话缓存(session cache)。用Redis缓存会话比其他存储(如Memcached)的优势在于:Redis提供持久化。当维护一个不是严格要求一致性的缓存时,如果用户的购物车信息全部丢失,大部分人都会不高兴的,现在,他们还会这样吗?
幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用Redis来缓存会话的文档。甚至广为人知的商业平台Magento也提供Redis的插件。
(3)、全页缓存(FPC)
除基本的会话token之外,Redis还提供很简便的FPC平台。回到一致性问题,即使重启了Redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似PHP本地FPC。
再次以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端。
此外,对WordPress的用户来说,Pantheon有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。
二:计数器
诸如统计点击数等应用。由于单线程,可以避免并发问题,保证不会出错,而且100%毫秒级性能!爽。
命令:INCRBY
当然爽完了,别忘记持久化,毕竟是redis只是存了内存!
三:队列
-
相当于消息系统,ActiveMQ,RocketMQ等工具类似,但是个人觉得简单用一下还行,如果对于数据一致性要求高的话还是用RocketMQ等专业系统。
-
由于redis把数据添加到队列是返回添加元素在队列的第几位,所以可以做判断用户是第几个访问这种业务
-
队列不仅可以把并发请求变成串行,并且还可以做队列或者栈使用
四:位操作(大数据处理)
用于数据量上亿的场景下,例如几亿用户系统的签到,去重登录次数统计,某用户是否在线状态等等。
想想一下腾讯10亿用户,要几个毫秒内查询到某个用户是否在线,你能怎么做?千万别说给每个用户建立一个key,然后挨个记(你可以算一下需要的内存会很恐怖,而且这种类似的需求很多,腾讯光这个得多花多少钱。。)好吧。这里要用到位操作——使用setbit、getbit、bitcount命令。
原理是:
redis内构建一个足够长的数组,每个数组元素只能是0和1两个值,然后这个数组的下标index用来表示我们上面例子里面的用户id(必须是数字哈),那么很显然,这个几亿长的大数组就能通过下标和元素值(0和1)来构建一个记忆系统,上面我说的几个场景也就能够实现。用到的命令是:setbit、getbit、bitcount
五:分布式锁与单线程机制
-
验证前端的重复请求(可以自由扩展类似情况),可以通过redis进行过滤:每次请求将request Ip、参数、接口等hash作为key存储redis(幂等性请求),设置多长时间有效期,然后下次请求过来的时候先在redis中检索有没有这个key,进而验证是不是一定时间内过来的重复提交
-
秒杀系统,基于redis是单线程特征,防止出现数据库“爆破”
-
全局增量ID生成,类似“秒杀”
六:最新列表
例如新闻列表页面最新的新闻列表,如果总数量很大的情况下,尽量不要使用select a from A limit 10这种low货,尝试redis的 LPUSH命令构建List,一个个顺序都塞进去就可以啦。不过万一内存清掉了咋办?也简单,查询不到存储key的话,用mysql查询并且初始化一个List到redis中就好了。
七:排行榜
谁得分高谁排名往上。命令:ZADD(有续集,sorted set)