目录
conda,cuda和cudnn安装方法TensorFlow搭建环境一样。
conda,cuda和cudnn文件百度网盘链接:
提取码:77e0
一、conda安装
Anaconda安装按照步骤完成。打开Anaconda Prompt如下图:
创建虚拟环境
conda create -n pytorch python=3.7
需要键盘输入y,然后完成虚拟环境安装。
附:再多说明几条命令
- conda env list //查看当前的虚拟环境,如果是多个深度学习框架可以创建多个虚拟环境。
- activate pytorch //激活当前虚拟环境
- deactivate //关闭当前虚拟环境
- conda remove -n pytorch --all //删除虚拟环境,pytorch 是虚拟环境名称
二、cuda11.1的安装
cuda安装按照步骤进行即可,选择自定义安装
安装完成后系统变量如下:
path里面包含内容如下:下面第二个红框内容需要自己补充
三、cudnn的安装
把cudnn解压如下图:
把bin、include和lib三个文件夹里的文件都分别拷贝到cuda安装目录下的bin、include和lib文件夹内。
四、pytorch安装
打开Anaconda Prompt
安装之前先换成清华的源
activate pytorch
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda install pytorch torchvision torchaudio cudatoolkit=11.0
五、RTX3090-pytorch环境验证
进入pytorch虚拟环境以后,进入python环境
import torch
torch.cuda.is_available()
True
torch.cuda.current_device()
0
torch.cuda.device(0)
<torch.cuda.device object at 0x0000022904BBDA08>
torch.cuda.device_count()
1
torch.cuda.get_device_name(0)
'GeForce RTX 3090'