题意:给定一个数N,要求出用2的次幂组成的等式的和等于N,输出有多少个符合条件的等式。如7,输出6:
- 1+1+1+1+1+1+1
- 1+1+1+1+1+2
- 1+1+1+2+2
- 1+1+1+4
- 1+2+2+2
- 1+2+4
限制条件:1<=N<=1000000,结果对1e9取余。
这道题可以dp来做。
设置一个二维数组dp[i,j],以及辅助数组c[i],c[i]表示2i。
状态:dp[i,j]表示用20,21,…,2i-1,2i相加得到j时,最多有多少种情况:
状态转移方程:
1.当j<c[i]时,表示无法用2i加入等式使之和为j,故dp[i,j]=dp[i-1,j];
2.当j>=c[i]时,此时可以用2i,2i可以用0个或者若干个:
A.使用0个时,此时有dp[i-1,j]种方法;
B.使用若干个时,此时有d[i,j-c[i]]种方法(注意!是dp[i,j-c[i]]而不是dp[i-1,j-c[i]],这与完全背包问题的道理一样)
因此,当j>=c[i]时,dp[i,j]=dp[i-1,j]+dp[i,j-c[i]],注意这里不是取其中最大的,而是相加,好好理解一下。
故有:
dp[i,j]=:
j<c[i]:dp[i-1,j]
j>=c[i]:dp[i-1,j]+dp[i,j-c[i]]
数据初始化:
1.dp[0,1~N]=1;
2.dp[0~N,0]=1.
第二种情况会比较匪夷所思,按理来说,当j为0时,应当没有符合条件的等式成立,因此dp[0~N,0]应赋值0,但是确实只能这样,试想dp[1,2]=dp[0,2]+dp[1,2-2]=dp[0,2]+dp[1,0],如果dp[1,0]赋值为0,那么dp[1,2]=1,但实际答案为2,因此这种初始化是不可取的,只能将dp[0,…,N,0]赋为1。你可以这样想,dp[0-N,0]存储的是j单独用2i组成的等式,而这种等式显然只有一个,因此应等于1。
然而,很遗憾的是,这道题用二维数组做的话,N的值取很大时会超时,因此,只能将dp[i,j]降维成dp[j],即使用滚动数组来完成,这样会节省一些时间(看下面的代码就知道),虽然不会多很多,但就是恰好,有些数组卡到了用二维数组的时间,用一维的就恰好过了。
AC代码(用滚动数组)
#include <iostream>
#include <stdio.h>
#include <cstring>
using namespace std;
int dp[1000005],c[25];
int n,i,j;
int main()
{
scanf("%d",&n);
c[0]=dp[0]=1;
for(i=1;i<=20;i++)
c[i]=c[i-1]<<1; //巧妙的利用了位运算处理2的次幂
for(i=0;i<=20&&c[i]<=n;i++)
for(j=c[i];j<=n;j++) //起点是c[i],而非0,这就是为什么用滚动数组会稍微快的原因
dp[j]=(dp[j-c[i]]+dp[j])%1000000000;
cout<<dp[n]<<endl;
return 0;
}
这个AC的代码是copy网上的大佬的,原博客网址为:
https://blog.csdn.net/sinat_37668729/article/details/77198227
下面是二维数组的代码:
#include<cstdio>
#include<cmath>
using namespace std;
long long dp[20][1000001];
long long c[20]={1};
int main()
{//while(1){
int n,i,j,k=0;
scanf("%d",&n);
//while((int)pow(2,k)<=n)
// k++;
for(i=1;i<=n;i++)
{
dp[0][i]=1;
}dp[0][0]=1;
for(i=0;i<=19;i++)
dp[i][0]=1;
// for(i=0;i<=k-1;i++)
// c[i]=(int)pow(2,i);
for(i=1;i<=19;i++)
c[i]=c[i-1]<<1;
for(i=1;i<=19&&c[i]<=n;i++)
{
for(j=c[i];j<=n;j++)
{
if(j<c[i]) dp[i][j]=dp[i-1][j]%1000000000;
else dp[i][j]=(dp[i-1][j]+dp[i][j-c[i]])%1000000000;
// printf("%lld\n",dp[i][j]);
}
}
printf("%lld\n",dp[i-1][n]);//}
return 0;
}
事实上,这道题还可以用规律来做:
当数字大于2时,当为奇数则a[n]=a[n-1];
当为偶数是 a[n]=a[n-1]+a[n/2];
同样是参照上面的博客的。
小结:
1.此题要多参考大佬的代码,关于状态方程的推导,滚动数组的运用,以及巧妙的利用位运算处理数据;
2.如果在平时遇到这种题,还是考虑找规律来解答吧,因为数据太大了,用dp很容易就超时。