《An Improved FAST+SURF Fast Matching Algorithm》(2017)

摘要:目标点匹配是图像配准和模糊处理的主要部分。基于实时应用的需要,快速匹配的要求也相应提出。经典的算法有计算量大和速度慢的缺点。为了解决经典算法存在的问题,提出了快速匹配算法,它结合了FAST特征点提取和SURF描述算子。比较了与经典方法之间的实验数据,本文中的算法达到了快速匹配的要求,而且改善了匹配的准确度。

图像匹配分为基于灰度关联和图像特征的匹配两部分。基于灰度关联进行图像匹配的方法计算量大,对图像的缩放和旋转非常敏感。基于图像特征的匹配利用图像的特征信息。2004年,Lowe(Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints[C]// International Journal of Computer Vision. 2004:91-110.)提出sift算法,通过引入拉普拉斯算子实现特征点的旋转和放缩不变性,可以实现自动匹配,但是这也相应地增加了计算量,不能达到实时的要求。2006年,bay(by H Bay, T Tuytelaars, L Gool. Surf: Speeded up robust features. 1:404–417[C]// European Conference on Computer Vision. Springer-Verlag,2006:404-417.)提出基于sift的SURF算法,主要方向是采用Haar小波特征点的计算方法,可以大大提高图像匹配的速度,同时在特征提取和描述符结构等方面有所改进,但仍不能满足实时性的要求。Rosten(Rosten E, Drummond T. Machine Learning for High-Speed Corner Detection[C]// European Conference on Computer Vision. Springer-Verlag,2006:430-443.)提出了一种比较实时匹配方法的快速特征点提出(FAST),FAST仅用灰度值的图像,因此不具有比例旋转不变性。

为了解决实时图像匹配的问题,特征点提取用实时检测特征点和纹理信息的FAST算法,并且用拉普拉斯算子加权改进FAST算法,SURF特征点描述算子来描述特征,用BBF去匹配,所以即保持了SURF算法的旋转和仿射不变性,并且能够达到实时的要求。

 

FAST特征点检测方法是通过比较以像素为中心的圆上的像素差或像素之和来确定特征点,并且如果连续N个像素大于像素值的阈值或中心像素小于阈值,则将该像素视为特征点。

    

SURF算法分为两步:特征点提取和描述算子构造。

     1、构建hessian矩阵构造高斯金字塔尺度空间。

     2、利用非极大值抑制初步确定特征点。将经过hessian矩阵处理过的每个像素点与其三维领域的26个点进行比较,如果它是这26个点中的最大值或者最小值,则保留下来,当做初步的特征点。检测过程中使用与该尺度层图像解析度相对应大小的滤波器进行检测。

     3、精确定位极值点。采用三维线性插值法得到亚像素级的特征点,同时也去掉那些值小于一定阈值的点,增加极值使检测到的特征点数量减少,最终只有几个特征最强点会被检测出来。

     4、选取特征点的主方向。在特征点的领域内,统计60度扇形内所有点的水平haar小波特征和垂直haar小波特征总和,haar小波的尺寸变长,然后60度扇形以一定间隔进行旋转,最后将最大值那个扇形的方向作为该特征点的主方向。

5、构造SURF特征点描述算子。确定以兴趣点为中心的正方形邻域,将确定的兴趣点的方向作为正方形邻域的Y方向。实际上,旋转图像会降低计算效率,因此我们直接使用Haar小波处理图像,然后内插得到兴趣小波点的dx和dy方向。把正方形区域分为16个子区域,每个子区域统计25个像素的水平方向和垂直方向的haar小波特征,这里的水平方向和垂直方向都是相对主方向而言。该haar小波特征为水平方向值之和,水平方向绝对值之和,垂直方向之和,垂直方向绝对值之和。这样每个小区就有4个值,所以每个特征点就是16*4=64维向量,相比sift而言少了一半,这在特征匹配中大大加快了匹配速度。

 

改进的FAST+SURF算法流程

  1. 利用高斯金字塔分别对原始图像和相对应的匹配图像进行处理。
  2. 原始图像和匹配图像分别用拉普拉斯算子进行处理。
  3. 用FAST算法提取特征点。
  4. 在两幅图中确定FAST特征点的主方向。
  5. 构建FAST特征点的SURF描述算子。
  6. 用BBF去匹配。
  7. 选择最小匹配距离为3倍的最佳匹配点阈值筛选。
  8. 根据模板的形状进一步筛选,提高匹配精度。

 

SURF算法和SIFT算法在实验中不能实现有阻塞遮挡的匹配。这是因为经过多次降采样,这两种方法的特征点较少。由于该进的FAST+SURF算法对拉普拉斯算子提取特征点进行了改进,该方法对于特征点丰富的物体具有良好的匹配效果和实时性。

 

 

 

Contour-Based Image Registration using Bipartite Graph Matching with Munkres Algorithm》(2014)——Qingsong Zhu

摘要:在图像处理中图像配准是一个重要的研究工作。用基于轮廓的方法去寻找对应点,在彩色图像和深度图像之间估计转换参数。在本文中用canny算子进行边界轮廓的检测,并用B-样条线模型定位到子像素水平。用sharp context来计算形状描述符的轮廓。对应点在相似轮廓上有相同的形状描述器,能够更好地使用Munkers算法实现二分图的匹配。通过RANSAC方法可以估计出最适合两幅图像的变换模型。

 

图像配准算法通常由四个主要过程组成:

1、特征提取:这些特征可以由它们的点代表来描述,例如特征点、线尾和曲线的微分描述符。

2、特征匹配:基于特征检测,建立了输入图像之间的特征对应关系。

3、转换模型:在去除错误匹配后留下正确的匹配。

4、图像转换:基于映射函数,可以将一个图像转换为另一个图像。这种类型的转换用于正确地覆盖两个映像。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值