机器学习
文章平均质量分 82
大数据分析BDA
Python及机器学习分享
展开
-
【数学建模】数学建模(一)——数学模型概述
一. 模型1. 原型和模型 原型指人们在现实世界里关心、研究或从事生产、管理的实际对象。模型则指为了某个特定目的将原型的某一部分信息简缩、提炼而构造的原型替代物。 按照模型替代原型的方式,模型可以分为物质模型(形象模型)和理想模型(抽象模型)。前者包括直观模型、物理模型等,后者包括思维模型、符号模型、数学模型等。 数学模型可以描原创 2015-01-10 10:31:23 · 16661 阅读 · 0 评论 -
终极算法【6】——贝叶斯学派
本质上,贝叶斯定理不仅仅是一个简单的规则,当你收到新的论据时,它用来改变你对某个假设的信任度:如果论据和假设一致,假设成立的概率上升,反之则下降。如果我们观察一个即使没有该原因也会发生的结果,那么能肯定的是,该原因的证据力不足。贝叶斯通过以下句子概括了:P(原因|结果)随着P(结果),即结果的先验概率(也就是在原因不明的情况下结果出现的概率)的下降而下降。最终,其他条件不变,一个原因是前验的可...原创 2018-07-29 12:49:13 · 1777 阅读 · 0 评论 -
终极算法【5】——进化学派
在霍德.利普森位于康奈尔大学的创意机器实验室中,奇形怪状的机器人正在学习爬行和飞行。这些机器人并不是人类工程师设计出来的,而是进化来的,和地球上生命多样性产生的过程一样。使这些机器人进化的算法,是19世纪由查尔斯.达尔文发明的。那时他不觉得这是一种算法,部分原因在于当时缺少一个关键的子程序。一旦1953年詹姆斯.沃森和弗朗西斯.克里克提供了该子程序,进化就会进入第二个阶段:该进化是在计算机中而不是...原创 2018-05-28 22:29:46 · 1304 阅读 · 0 评论 -
终极算法【4】——联结学派
赫布律是联结主义的基石,联结主义相信知识存储在神经元之间的联结关系中。威廉.詹姆斯在其著作《心理学原理》中,阐明了连接的主要原理,这和赫布律十分相似,只是大脑活动被神经元取代,放电效率被兴奋的传播取代。在符号学派中,符号和它们之间代表的概念之间有一一对应的关系。相反,联结学派的代表方式却是分散式的:每个概念由许多神经元来表示,而每个神经元又会和其他神经元一起代表许多不同的概念。符号学派和联结学派的...原创 2018-03-24 18:03:27 · 2129 阅读 · 0 评论 -
终极算法【3】——符号学派
理性主义者认为,感官会欺骗人,而逻辑推理是通往知识的唯一可靠的道路。经验主义者认为所有的推理都是不可靠的,知识必须来源于观察及实验。理性主义与经验主义是哲学家最热衷讨论的问题。柏拉图是早期的理性主义者,而亚里士多德是早期的经验主义者。关于这个问题的辩论,真正开始于启蒙运动时期,每方有三位伟大的思想家:笛卡尔、斯宾诺莎、莱布尼茨是理性主义的代表,洛克、贝克莱、休谟则是经验主义的代表。大卫.休谟是最伟...原创 2018-03-18 11:38:42 · 2641 阅读 · 1 评论 -
终极算法【2】——终极算法
机器学习的应用非常广泛,更为惊人的是,相同的算法可以完成不同的事。在机器学习领域之外,如果你要解决不同的问题,就得编写两个不同的程序。相同的机器学习算法不仅可以完成无穷无尽且不同的事,而且和被它们替代的传统算法相比,它们要简单得多。多数学习算法可能只有数百行或者数千行。相比之下,传统程序则需几十万甚至上百万行代码。如果那么少的学习算法就可以做那么多事,那么有一个逻辑上的疑问:单个学习算法可原创 2018-02-06 22:26:54 · 2309 阅读 · 0 评论 -
终极算法【1】——机器学习革命
当今,算法与我们息息相关,生活周围的手机、汽车、房子、家电和工厂等等,算法无时无刻不在发挥着作用。如果所有算法都突然停止运转,那么就是人类世界的末日。算法就是一系列指令,告诉计算机该做什么。克劳德.香农以“信息论之父”为人们所知,他第一个意识到晶体管的活动就是运算。如果A晶体管只有在B和C晶体管都打开是才打开,那么这时它就是在做小型的逻辑运算;如果A晶体管在B和C晶体管其中一个打开时才原创 2018-01-28 22:03:59 · 717 阅读 · 0 评论 -
【Python】科学计算(一)——Mandelbrot集合
一. 分形与混沌 自然界的很多事物,如树木、云彩、山脉、雪花、海岸线等,都呈现出传统几何学所不能描述的形状,这些形状都有如下的特性:有着十分精细的不规则结构整体与局部相似 分形与混沌的关系密切,多是以自组织系统为其研究对象,而含义又各不相同。自组织现象常常是时空有序的结构,是复杂的系统,用传统的简化方法无法解决。分形几何学就是用来研究这样一类几何形状原创 2015-03-09 22:48:41 · 5598 阅读 · 1 评论 -
【机器学习】机器学习(一)——基于概率论的分类
一. 分类的概率论基础 贝叶斯分类准则为: ★如果,那么属于类别 ★如果,那么属于类别 应用贝叶斯准则:可以通过已知的三个概率值来计算未知的概率值。二. 用朴素贝叶斯进行文档分类 使用朴素贝叶斯分类的一般过程为: ①收集数据:可以使用任何方法 ②准备数据:需要数值原创 2015-02-04 22:20:31 · 3051 阅读 · 1 评论 -
【机器学习】机器学习(三)——K-均值聚类
一. 聚类基础 聚类是一种无监督学习,它将相似的对象归到一个簇中。聚类与分类的最大不同在于,分类的目标事先已知,而聚类则不一样。因其产生的结果与分类相同,只是类别没有预先定义,聚类有时也被称为无监督分类。 K-均值是发现给定数据集的k个簇的算法。簇个数k是用户给定的,每一个簇通过其质心,即簇中所有点的中心来描述。它的工作流程为:首先,随机确定k个初始点作为质心,原创 2015-02-04 22:28:36 · 2120 阅读 · 0 评论 -
【机器学习】机器学习(二)——线性回归
一. 回归概述 回归的目的是预测数值型的目标值。最直接的办法是依据输入写出一个目标值的计算公式。线性回归意味着可以将输入项分别乘以一些常量,再将结果加起来得到输出。二. 回归的一般方法 回归分析的一般过程如下: ①收集数据:采用任意方法 ②准备数据:回归需要数值型数据,标称型数据将被转成二值型数据 ③分析原创 2015-02-04 22:26:44 · 2539 阅读 · 0 评论 -
终极算法【7】——类推学派
类比是推动许多历史上最伟大科学进度的动力。当达尔文阅读马尔萨斯的《人口论》时,被经济和自然界中生存竞争的相似性触动,所以有了自然选择理论的诞生。类比在机器学习中扮演重要性刚开始进展缓慢,它的第一个算法的化身出现在一份写于1951年的技术报告中,作者是两位伯克利的统计学家——伊夫琳.菲克斯和乔.霍奇斯。最近邻算法是我们类比学习法之旅的第一站,第二站是支持向量机,第三站也是最后一站,是成熟的类比推...原创 2018-07-29 22:02:02 · 1529 阅读 · 0 评论