当今,算法与我们息息相关,生活周围的手机、汽车、房子、家电和工厂等等,算法无时无刻不在发挥着作用。如果所有算法都突然停止运转,那么就是人类世界的末日。
算法就是一系列指令,告诉计算机该做什么。克劳德.香农以“信息论之父”为人们所知,他第一个意识到晶体管的活动就是运算。如果A晶体管只有在B和C晶体管都打开是才打开,那么这时它就是在做小型的逻辑运算;如果A晶体管在B和C晶体管其中一个打开时才打开,就是另外一种小型逻辑运算;如果A晶体管在B晶体管任何关闭的时候都打开,或者反过来,这又是第三种运算。所有算法,无论多复杂,都能分解为这三种逻辑运算:且、或、非。通过结合许多逻辑运算,我们可以进行极其复杂的逻辑推理。
每个算法都会有输入和输出:数据输入计算机,算法会利用数据完成接下来的事,然后结果就出来了。机器学习则颠倒了这个顺序:输入数据和想要的结果,输出的则是算法,即把数据转换成结果的算法。
计算机科学通常需要的是准确思维,但机器学习需要的是统计思维。在机器学习中,知识往往以统计模型的形式出现,因为多数知识是可以统计的。机器学习有许多不同的形式,也会涉及许多不同的名字:模式识别、统计建模、数据挖掘、知识发现、预测分析、数据科学、适应系统和自组织系统等。
机器学习有时会和人工智能混淆。严格讲,机器学习是人工智能的子域,但机器学习发展的如此之快,现已超越它的母领域。
在信息处理这个生态系统中,学习算法是顶级掠食者。数据库、网络爬虫、索引器等相当于食草动物,耐心地对无限领域中的数据进行蚕食。统计算法、