线性代数

– Start

[第1集] 矩阵简介

import numpy as np

# 什么是矩阵(matrix)?
a = np.array([ [1, 2],
               [3, 4] ])

b = np.array([ [-1, -2],
               [-3, -4] ])

# 矩阵加法
c = a + b
print(f'a + b = {c}')

# 矩阵减法
c = a - b
print(f'a - b = {c}')

[第2集] 矩阵乘法(一)

[第3课] 矩阵乘法(二)

import numpy as np

# 定义矩阵
a = np.array([ [1, 2],
               [3, 4] ])

b = np.array([ [-1, -2],
               [-3, -4] ])

# 矩阵乘法 (行*列)
# [[(1*-1 + 2*-3), (1*-2 + 2*-4)],
# [(3*-1 + 4*-3), (3*-2 + 4*-4)]]
c = a @ b
print(c)

[第4集] 矩阵的逆(一)

import numpy as np

# 单位矩阵(identity matrix)
a = np.identity(3)
b = np.eye(3)
print('单位矩阵')
print(a)


# 逆矩阵(inverse matrix)
c = np.array([ [1, 2],
               [3, 4] ])

# 行列式(determinant) = (1*4 - 2*3)
# 伴随矩阵(adjugate of matrix) = np.array([ [4, -2],
#                                           [-3, 1] ])
# 逆矩阵 = 1 / 行列式 * 伴随矩阵
d = np.linalg.inv(c)
print('矩阵 c')
print(c)
print('c 的逆矩阵')
print(d)


# 矩阵 * 逆矩阵 = 单位矩阵
e = c @ d
e = np.round(e, 2)
print('矩阵 * 逆矩阵')
print(e)

– 声 明:转载请注明出处
– Last Updated on 2018-10-22
– Written by ShangBo on 2018-10-22
– End

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值