OpenVINO之二:Windows环境下OpenVINO安装与配置

OpenVINO 同时被 2 个专栏收录
9 篇文章 4 订阅
130 篇文章 5 订阅

OpenVINO系列:
OpenVINO之一:OpenVINO概述
OpenVINO之二:Windows环境下OpenVINO安装与配置
OpenVINO之三:Linux环境下OpenVINO安装与配置

1 下载并安装OpenVINO

1-1 下载OpenVINO

下载地址:https://software.seek.intel.com/openvino-toolkit?os=windows
需要先注册,邮箱会收到下载链接和Serial Number来激活软件。

1-2 开始安装

双击下载好的OpenVINO开始安装
在这里插入图片描述

1-3 选择安装路径:

在这里插入图片描述
接着一直下一步就好,提示python版本不满足>=3.6,可以先忽略安装。

1-4 检查依赖库

Microsoft Visual Studio* with C++ 2017 or 2015, with MSBuild, and the Build Tools for Microsoft Visual Studio
CMake>=3.4
Python>=3.6.5
一般安装vs2015或者2017的,第一项已经满足。

在这里插入图片描述

1-5 安装完成

选择过会重启
在这里插入图片描述

2 安装依赖包

2-1 下载 Microsoft Visual Studio* with C++ 2017 or 2015, with MSBuild, and the Build Tools for Microsoft Visual Studio

Build Tools for Microsoft Visual Studio:
https://visualstudio.microsoft.com/zh-hans/downloads/

Build Tools for Microsoft Visual Studio:
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2015
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2017

2-2 下载 CMake >=3.4

下载地址:https://cmake.org/download/

2-3 下载 Python >= 3.6

推荐使用Anaconda安装python
下载地址:https://www.anaconda.com/distribution/

3 设置环境变量

运行

C:\Program Files (x86)\IntelSWTools\openvino\bin\setupvars.bat

在这里插入图片描述

4 配置模型优化器(Model Optimizer)

进入目录下

C:\Program Files (x86)\IntelSWTools\openvino\deployment_tools\model_optimizer\install_prerequisites

运行

install_prerequisites.bat

也可以根据需要运行对应的脚本

Caffe : install_prerequisites_caffe.bat
TensorFlow : install_prerequisites_tf.bat
ONNX (Caffe2, PyTorch, MXNet,ML. NET,TensorRT,Microsoft CNTK) : install_prerequisites_onnx.bat
MXNet : install_prerequisites_mxnet.bat
Kaldi : install_prerequisites_kaldi.bat

5 运行示例

运行示例检验是否安装成功。

进入目录:

C:\Program Files (x86)\IntelSWTools\openvino\deployment_tools\demo

5-1 图像分类

下载并将转换caffe模型为Intermediate Representation (IR)文件,并运行图像分类测试

demo_squeezenet_download_convert_run.bat

在这里插入图片描述

5-2 目标检测与识别

下载预训练模型用于车辆检测与车辆属性识别和车牌检测与车牌识别

demo_security_barrier_camera.bat

在这里插入图片描述
其他预训练的模型: https://github.com/opencv/open_model_zoo

可能遇到的问题

1 pip 安装下载不到

Could not fetch URL https://pypi.org/simple/tensorflow/: There was a problem confirming the ssl certificate: HTTPSConnectionPool(host=‘pypi.org’, port=443): Max retries exceeded with url: /simple/tensorflow/ (Caused by SSLError(“Can’t connect to HTTPS URL because the SSL module is not available.”)) - skipping
Could not find a version that satisfies the requirement tensorflow>=1.2.0 (from -r …\requirements.txt (line 1)) (from versions: )
No matching distribution found for tensorflow>=1.2.0 (from -r …\requirements.txt (line 1))

到对应install_prerequisites_xxx.bat下找到

pip install --user -r …\requirements%postfix%.txt

找到对应的requirements_xxx.txt文件,手动添加下载源安装
OpenVINO视觉加速库依赖包打包下载
如:

pip install tensorflow=1.2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

如果还是下载不到就只能去清华镜像源手动下载安装了
打包下载:OpenVINO视觉加速库依赖包 https://download.csdn.net/download/shanglianlm/11114728

参考资料:
1 OpenVINO™ toolkit Documentation
2 Install Intel® Distribution of OpenVINO™ toolkit for Windows* 10
3 Install Intel® Distribution of OpenVINO™ toolkit for Linux*
4 Introduction to Intel® Deep Learning Deployment Toolkit

  • 4
    点赞
  • 16
    评论
  • 42
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

<p> <span></span> </p> <p> 手把手讲授如何搭建成功OpenVINO框架,并且使用预训练模型快速开发超分辨率、道路分割、汽车识别、人脸识别、人体姿态和行人车辆分析。得益于OpenVINO框架的强大能力,这些例子都能够基于CPU达到实时帧率。<br /> 课程的亮点在于在调通Demo的基础上更进一步:一是在讲Demo的时候,对相关领域问题进行分析(比如介绍什么是超分辨率,有什么作用)、预训练模型的来龙去脉(来自那篇论文,用什么训练的)、如何去查看不同模型的输入输出参数、如何编写对应的接口参数进行详细讲解;二是基本上对所有的代码进行重构,也就是能够让例子独立出来,并且给出了带有较详细注释的代码;三是注重实际运用,将Demo进一步和实时视频处理框架融合,形成能够独立运行的程序,方便模型落地部署;四是重难点突出、注重总结归纳,对OpenVINO基本框架,特别是能够提高视频处理速度的异步机制和能够直接部署解决实际问题的骨骼模型着重讲解,帮助学习理解;五是整个课程准备精细,每一课都避免千篇一律,前一课有对后一课的预告,后一课有对前一课的难点回顾,避免学习过程中出现突兀;六是在适当的时候拓展衍生,不仅讲OpenVINO解决图像处理问题,而且还补充图像处理的软硬选择、如何在手机上开发图像处理程序等内容,帮助拓展视野,增强对行业现状的了解。<br /><br /> 基本提纲:<br /> 1、课程综述、环境配置<br /> 2、OpenVINO范例-超分辨率(super_resolution_demo)<br /> 3、OpenVINO范例-道路分割(segmentation_demo)<br /> 4、OpenVINO范例-汽车识别(security_barrier_camera_demo)<br /> 5、OpenVINO范例-人脸识别(interactive_face_detection_demo)<br /> 6、OpenVINO范例-人体姿态分析(human_pose_estimation_demo)<br /> 7、OpenVINO范例-行人车辆分析(pedestrian_tracker_demo)<br /> 8、NCS和GOMFCTEMPLATE<br /> 9、课程小结,资源分享 </p>
©️2021 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值