Python机器学习入门;推荐一本Python数据分析与机器学习入门书籍-唐宇迪《跟着迪哥学 Python数据分析与机器学习实战》PDF+源代码

《跟着迪哥学 Python数据分析与机器学习实战》是一本适合初学者的教程,涵盖了Python科学计算库、数据分析、机器学习经典算法、深度学习及项目实战。书中通过实例详细解释了如何使用Python进行数据处理和构建模型,包括神经网络、卷积神经网络等,并提供了PDF和源代码。
摘要由CSDN通过智能技术生成

学习python,然后用于数据分析,同时能够进行机器学习实战,按照这个流程,对AI爱好者有很大帮助,推荐学习《跟着迪哥学 Python数据分析与机器学习实战》,结合了机器学习、数据分析和Python语言,通过案例以通俗易懂的方式讲解了如何将算法应用到实际任务。共20章,分4个部分。 
第1部分介绍了Python的工具包,包括科学计算库Numpy、数据分析库Pandas、可视化库Matplotlib;

第2部分讲解了机器学习中的经典算法,例如回归算法、决策树、集成算法、支持向量机、聚类算法等;

第3部分介绍了深度学习中的常用算法,包括神经网络、卷积神经网络、递归神经网络;

第4部分是项目实战,基于真实数据集,将算法模型应用到实际业务中。适合对人工智能、机器学习、数据分析等方向感兴趣的初学者和爱好者。

《跟着迪哥学 Python数据分析与机器学习实战》PDF,497页,带目录;配套源代码;作者: 唐宇迪。
需要的扫码加微领取
在这里插入图片描述

在这里插入图片描述
推荐一个该书的学习路线图
在这里插入图片描述

逻辑回归是一种机器学习算法,常用于二分类问题。下面是一个逻辑回归的Python代码实现的例子: ```python import numpy as np import pandas as pd # Sigmoid函数,用于将预测结果转化为概率值 def sigmoid(z): return 1 / (1 + np.exp(-z)) # 损失函数,用于评估模型的准确性 def cost(theta, X, y): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) first = np.multiply(-y, np.log(sigmoid(X * theta.T))) second = np.multiply((1-y), np.log(1 - sigmoid(X * theta.T))) return np.sum(first - second) / len(X) # 梯度下降算法,用于最小化损失函数,得到最优参数 def gradientDescent(X, y, theta, alpha, iters): temp = np.matrix(np.zeros(theta.shape)) parameters = int(theta.ravel().shape[1]) cost = np.zeros(iters) for i in range(iters): error = sigmoid(X * theta.T) - y for j in range(parameters): term = np.multiply(error, X[:,j]) temp[0,j] = theta[0,j] - (alpha / len(X)) * np.sum(term) theta = temp cost[i] = cost(theta, X, y) return theta, cost # 读取数据 data = pd.read_csv('data.csv') # 添加一列全为1的特征列 data.insert(0, 'Ones', 1) # 将数据转化为矩阵 cols = data.shape[1] X = data.iloc[:,0:cols-1] y = data.iloc[:,cols-1:cols] X = np.matrix(X.values) y = np.matrix(y.values) theta = np.zeros([1,3]) # 设置学习率和迭代次数 alpha = 0.01 iters = 1000 # 执行梯度下降算法,得到最优参数 theta, cost = gradientDescent(X, y, theta, alpha, iters) # 输出最优参数和损失函数值 print("最优参数:", theta) print("损失函数值:", cost[-1]) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能小雨老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值