一、二叉搜索树上的两节点的公共祖先
235. Lowest Common Ancestor of a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
由于本题是基于BST二叉搜索树上的算法, 由于二叉搜索树的特殊性质,可以采用以下特殊的思路,而不用基于普通的二叉树的思路;如果是普通的二叉树则需要妖兽记录到达节点p和q的路径,然后再在p和q的路径中去寻找共同的点。而二叉搜索树,由于其左子树上;所有节点的值均小于根节点的值,而右子树上的节点的值均大于根节点的值
递归方法:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root == NULL || q == NULL || p == NULL)
return NULL;
if(p->val < root->val && q->val < root->val)
return lowestCommonAncestor(root->left, p, q);
if(p->val > root->val && q->val > root->val)
return lowestCommonAncestor(root->right, p, q);
return root;
}
非递归的方法:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root == NULL || q == NULL || p == NULL)
return NULL;
TreeNode* cur = root;
while(true)
{
if(p->val < cur->val && q->val < cur->val)
cur = cur->left;
else if(p->val > cur->val && q->val > cur->val)
cur = cur->right;
else
return cur;
}
}
二、二叉树上两节点的公共祖先节点
236. Lowest Common Ancestor of a Binary Tree
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______
/ \
___5__ ___1__
/ \ / \
6 _2 0 8
/ \
7 4
For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
解题思路:该题不同于235二叉搜索树中的两个节点的最近公共祖先节点,二叉树没有二叉搜索树的特殊性质。本题两个节点的最近公共祖先节点,主要考虑两种情况:
(1)两节点分别为某一个祖先节点的左右节点,则该祖先节点为最终所求节点:如节点5和节点1,分别为节点3的左右子树上的节点,则节点3为所求节点;
(2)所求两个节点一个为另一个的根节点,如图中节点5和节点4的公共祖先节点,由于节点5为节点4的祖先节点,故而5为最终所求的节点。
递归的方法:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(NULL == root || root == p || root == q) return root;
TreeNode* left = lowestCommonAncestor(root->left,p,q);
TreeNode* right = lowestCommonAncestor(root->right,p,q);
if(left != NULL && right != NULL)
return root; //该句返回的是,如果p或者q分别在root的左右子树中,则返回root
return left ? left : right; //该句返回的是p或q二者之中一者为其他的父节点
}
非递归的方法:首先分别用一个vector存储从root节点到p到q的路径,然后转换成求两个单链表的第一个公共节点的问题
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root == nullptr || p == nullptr || q == nullptr){
return nullptr;
}
vector<TreeNode*> path1;
bool isFind = Path(root,p,path1);
// 没有P节点
if(!isFind){
return nullptr;
}
vector<TreeNode*> path2;
isFind = Path(root,q,path2);
if(!isFind){
return nullptr;
}
int size1 = path1.size();
int size2 = path2.size();
// 求最近祖先
TreeNode* node = nullptr;
for(int i = 0,j = 0;i <= size1 && j <= size2;++i,++j){
if((i == size1 || j == size2) || path1[i] != path2[j]){
node = path1[i-1];
break;
}
}
return node;
}
private:
// 从根节点到node节点的路径
bool Path (TreeNode* root,TreeNode* node,vector<TreeNode*> &path) {
path.push_back(root);
if(root == node) {
return true;
}
bool isExits = false;
// 左子树
if(root->left) {
isExits = Path(root->left,node,path);
}
// 右子树
if(!isExits && root->right) {
isExits = Path(root->right,node,path);
}
if(!isExits) {
path.pop_back();
}
return isExits;
}