Kronecker product



If A is an m × n matrix and B is a p × q matrix, then the Kronecker product AB is the mp × nq block matrix:

\mathbf{A}\otimes\mathbf{B} = \begin{bmatrix} a_{11} \mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m1} \mathbf{B} & \cdots & a_{mn} \mathbf{B} \end{bmatrix},

more explicitly:

{\mathbf{A}\otimes\mathbf{B}} = \begin{bmatrix}
   a_{11} b_{11} & a_{11} b_{12} & \cdots & a_{11} b_{1q} &
                   \cdots & \cdots & a_{1n} b_{11} & a_{1n} b_{12} & \cdots & a_{1n} b_{1q} \\
   a_{11} b_{21} & a_{11} b_{22} & \cdots & a_{11} b_{2q} &
                   \cdots & \cdots & a_{1n} b_{21} & a_{1n} b_{22} & \cdots & a_{1n} b_{2q} \\
   \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\
   a_{11} b_{p1} & a_{11} b_{p2} & \cdots & a_{11} b_{pq} &
                   \cdots & \cdots & a_{1n} b_{p1} & a_{1n} b_{p2} & \cdots & a_{1n} b_{pq} \\
   \vdots & \vdots & & \vdots & \ddots & & \vdots & \vdots & & \vdots \\
   \vdots & \vdots & & \vdots & & \ddots & \vdots & \vdots & & \vdots \\
   a_{m1} b_{11} & a_{m1} b_{12} & \cdots & a_{m1} b_{1q} &
                   \cdots & \cdots & a_{mn} b_{11} & a_{mn} b_{12} & \cdots & a_{mn} b_{1q} \\
   a_{m1} b_{21} & a_{m1} b_{22} & \cdots & a_{m1} b_{2q} &
                   \cdots & \cdots & a_{mn} b_{21} & a_{mn} b_{22} & \cdots & a_{mn} b_{2q} \\
   \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\
   a_{m1} b_{p1} & a_{m1} b_{p2} & \cdots & a_{m1} b_{pq} &
                   \cdots & \cdots & a_{mn} b_{p1} & a_{mn} b_{p2} & \cdots & a_{mn} b_{pq}
\end{bmatrix}.

More compactly, we have 
(A\otimes B)_{p(r-1)+v, q(s-1)+w} = a_{rs} b_{vw}

If A and B represent linear transformations V1W1 and V2W2, respectively, then AB represents the tensor product of the two maps, V1V2W1W2.

Example[edit]


  \begin{bmatrix}
    1 & 2 \\
    3 & 4 \\
  \end{bmatrix}
\otimes
  \begin{bmatrix}
    0 & 5 \\
    6 & 7 \\
  \end{bmatrix}
=
  \begin{bmatrix}
    1\cdot 0 & 1\cdot 5 & 2\cdot 0 & 2\cdot 5 \\
    1\cdot 6 & 1\cdot 7 & 2\cdot 6 & 2\cdot 7 \\
    3\cdot 0 & 3\cdot 5 & 4\cdot 0 & 4\cdot 5 \\
    3\cdot 6 & 3\cdot 7 & 4\cdot 6 & 4\cdot 7 \\
  \end{bmatrix}

=
  \begin{bmatrix}
    0 & 5 & 0 & 10 \\
    6 & 7 & 12 & 14 \\
    0 & 15 & 0 & 20 \\
    18 & 21 & 24 & 28
  \end{bmatrix}.

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值