Mini Batch K-Means算法+sklearn实现

在这里插入图片描述
在这里插入图片描述

from sklearn.cluster import MiniBatchKMeans
import numpy as np
import matplotlib.pyplot as plt
# 载入数据
data = np.genfromtxt("kmeans.txt", delimiter=" ")
# 设置k值
k = 4  
# 训练模型
model = MiniBatchKMeans(n_clusters=k)
model.fit(data)

在这里插入图片描述

# 分类中心点坐标
centers = model.cluster_centers_
print(centers)

在这里插入图片描述

# 预测结果
result = model.predict(data)
print(result)
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值