在数据分析中,日期和时间数据的处理是一项常见且关键的任务。Pandas,作为Python中一个强大的数据处理库,提供了丰富的功能来简化这一过程。本文将详细介绍如何使用Pandas进行日期时间的转换、格式化以及提取日期的组成部分,帮助你更高效地处理时间序列数据。
1. 转换为日期时间对象
在Pandas中,处理日期和时间的第一步通常是将字符串或数字格式的日期转换为日期时间对象。这可以通过pd.to_datetime()
函数实现。
import pandas as pd
# 示例日期列表
dates = ['2024-08-13', '2024-08-14', '2024-08-15']
# 转换为日期时间对象
date_objects = pd.