Square Number(完全平方数)

本文介绍两种算法来找出所有形如aabb的四位完全平方数,即前两位数字相同,后两位数字也相同的四位数。第一种算法通过求平方根并检查其是否为整数来判断一个数是否为完全平方数。第二种算法则通过枚举可能的平方根,避免了开方操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Square Number(完全平方数)
输出所有形如aabb的四位完全平方数(即前两位数字相等,后两位数字也相等)。

本题算法思想:
思路一(见代码1):判断一个数是否为完全平方数,只需求出该数的平方根,然后看它是否为整数,即用一个double型变量m储存sqrt(n),然后判断m是否为整数;
判断一个数是否为整数,只需用它跟它的整数部分比较即可。
思路二(见代码2):枚举平方根x,从而避免开平方操作。

注意事项:
用floor(m+0.5)与m比较而不是用floor(m)与m比较的原因是:浮点数(和函数)的运算有可能出现误差。如经过大量计算后,1变成了0.9999,floor的结果是0而不是1!
为了减小误差的影响,一般改成四舍五入,即floor(x+0.5)
浮点运算可能存在误差。在进行浮点数比较时,应考虑到浮点误差。

代码1:

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;

int main()
{
    int a,b,n;
    double m;    //注意平方根m是double型
    for(a=1;a<=9;a++)
    {
        for(b=0;b<=9;b++)
        {
            n=a*1100+b*11;
            m=sqrt(n);
            if(floor(m+0.5)==m)printf("%d\n",n); //函数floor(x)返回x的整数部分
        }
    }
    return 0;
}

代码2:

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;

int main()
{
    int x,n,a,b;
    for(x=1;;x++)  //实际上,for里面的三个部分都可以缺失,即死循环,需要break才能结束
    {
        n=x*x;
        if(n<1000)continue;  //continue:直接进入下一次循环
        if(n>9999)break;
        a=n/100;
        b=n%100;
        if(a/10==a%10&&b/10==b%10)
        {
            printf("%d\n",n);
        }
    }
    return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值