Square Number(完全平方数)
输出所有形如aabb的四位完全平方数(即前两位数字相等,后两位数字也相等)。
本题算法思想:
思路一(见代码1):判断一个数是否为完全平方数,只需求出该数的平方根,然后看它是否为整数,即用一个double型变量m储存sqrt(n),然后判断m是否为整数;
判断一个数是否为整数,只需用它跟它的整数部分比较即可。
思路二(见代码2):枚举平方根x,从而避免开平方操作。
注意事项:
用floor(m+0.5)与m比较而不是用floor(m)与m比较的原因是:浮点数(和函数)的运算有可能出现误差。如经过大量计算后,1变成了0.9999,floor的结果是0而不是1!
为了减小误差的影响,一般改成四舍五入,即floor(x+0.5)
浮点运算可能存在误差。在进行浮点数比较时,应考虑到浮点误差。
代码1:
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;
int main()
{
int a,b,n;
double m; //注意平方根m是double型
for(a=1;a<=9;a++)
{
for(b=0;b<=9;b++)
{
n=a*1100+b*11;
m=sqrt(n);
if(floor(m+0.5)==m)printf("%d\n",n); //函数floor(x)返回x的整数部分
}
}
return 0;
}
代码2:
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;
int main()
{
int x,n,a,b;
for(x=1;;x++) //实际上,for里面的三个部分都可以缺失,即死循环,需要break才能结束
{
n=x*x;
if(n<1000)continue; //continue:直接进入下一次循环
if(n>9999)break;
a=n/100;
b=n%100;
if(a/10==a%10&&b/10==b%10)
{
printf("%d\n",n);
}
}
return 0;
}