【核心算法篇十九】《 DeepSeek因果推断:双重差分模型如何破解政策评估的「时空难题」》

一、当AB实验不可行时,我们该相信什么?(因果推断困局解析)

假设某城市推出「夜间地铁免费」政策,市长想知道这个政策是否真的提升了夜间经济。这时候你会发现:
1️⃣ 无法克隆城市:不能同时存在一个「实施政策」和「不实施政策」的平行宇宙
2️⃣ 数据混杂严重:疫情反弹、天气变化、节假日等因素都在干扰
3️⃣ 时间效应纠缠:即使没有政策,夜经济本身也会有季节性波动

这就是双重差分模型(Difference-in-Differences,DID)大显身手的战场。DeepSeek团队最新发布的DID引擎,就像给政策评估装上了「时空穿梭望远镜」,我们这就来拆解它的技术内核。


二、DID核心原理:两次差分破解混杂困局

2.1 基础版DID:小学生都能懂的「魔法公式」

假设我们要评估「外卖平台会员折扣」对订单量的影响:

组别\时段 政策前(1月) 政策后(2月) 差值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

再见孙悟空_

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值