本章首先从产生正弦波振荡的条件出发,讨论正弦波振荡电路的基本组成部分和一般分析方法,然后介绍几种典型的RC振荡电路和LC振荡电路。在讨论这两种正弦波振荡电路的工作原理时,首先分别论述RC选频网络和LC谐振回路的频率特性,然后根据正弦波振荡的幅度平衡条件和相位平衡条件,求出各种振落电路的振荡频率和起振条件。是后,对各种RC振荡电路以及各种LC振荡电路的特点进行了比较。
本章还扼要地介绍可由石英晶体组成的正弦波振荡电路的工作原理和特点。
①掌握产生正弦波振荡的相位平衡条件和幅度平衡条件。
②掌握文氏电桥式RC振荡电路的工作原理、振荡频率、起振条件以及电路的特点。
③了解其他RC振荡电路的工作原理。
④正确理解典型的LC振荡电路(变压器反馈式、电感三点式和电容三点式等)的工作原理及振荡频率的估算方法。I
⑤正确理解各种非正弦波发生电路(矩形波、三角波和锯齿波)的工作原理。
⑥了解石英晶体振荡电路的特点及工作原理。
一般来说,正弦波振荡电路应该具有放大电路和反馈网络,此外,电路中还应包含有选频网络和稳幅环节(例如非线性元件),前者是为了获得单一频率的正弦波振荡,后者是为了达到稳幅振荡。
正弦波振荡电路的选频网络若由电阻和电容元件组成,通常称为RC正弦波振荡电路;若由电感和电容元件组成,则称为LC正弦波振荡电路。一般可以采用以下步骤来分析振荡电路的工作原理:
一、判断能否产生正弦波振荡
l、检查电路是否具备正弦波振荡的组成部分,即是否具有放大电路、反馈网络、选频网络和稳幅环节。
2、检查放大电路的静态工作点是否能保证放大电路正常工作。
3、分析电路是否满足自激振荡条件。首先检查相位平衡条件,至于幅度条件,一般比较容易满足。若不满足幅度条件,在测试调整时,可以改变放大电路的放大倍数|A|或反馈系数|F|使电路满足|AF| >1的幅度条件。
判断相位平衡条件的方法是:假设断开反馈信号至放大电路的输入端点,并把放大电路的输入阻抗作为反馈网络的负载。在放大电路的断开端点处加信号电压Ui,经放大电路和反馈网络得反馈电压Uf。根据放大电路和反馈网络的相频特性,分析Uf和Ui的相位关系。如果在某一特定频率下相位差为士2nл(n=0,1,2,…),则电路满足相位平衡条件。
二、估算振荡频牢和起振条件
振荡频率由相位平衡条件所决定,而起振条件可由幅度平衡条件|AF|>l的关系式求得。为了计算振荡频率,需要画出断开反馈信号至放大电路的输入端点后的交流等效电路,写出回路增益AF的表示式。令 即可求得满足该条件的频率fo,此fo即为振荡频率;然后令f=fo时的|AF|值大于l,即得起振条件。下面结合具体电路进行分析。
振荡电路的原理图如上图所示。其中集成运放A作为放大电路,它的选频网络是一个由R、C元件组成的串并联网络,RF和R’支路引入一个负反馈。由图可见,串并联网络中的R1、C1和R2、C2以及负反馈支路中的RF和R’正好组成一个电桥的四个臂,因此这种电路又称为文氏电桥振荡电路。 一、RC串并联网络的选频特性
当f=fo=1/2 RC时,Uf的幅值达到最大,等于U幅值的1/3,同时Uf与U同相。
二、振荡频率与起振条件
1、振荡频率
为了满足振荡的相位平衡条件,要求 ΨA+ΨF=±2nπ。以上分析说明当f=fo时,串并联网络的ΨF=0,如果在此频率下能使放大电路的ΨA=±2nπ,即放大电路的输出电压与输入电压同相,即可达到相位平衡条件。在图8.2.l的RC串并联网络振荡电路原理图中,放大部分是集成运放,采用同相输入方式,则在中频范围内 ΨA近似等于零。因此,电路在fo时ΨA+ΨF=0,而对于其他任何频率,则不满足振荡的相位平衡条件,所以电路的振荡频率为
已经知道当f=fo时,|F|=1/3。为了满足振荡的幅度平衡条件,必须使|AF|>1,由此可以求得振荡电路的起振条件为
|A| > 3 (8.2.5)
因同相比例运算电路的电压放大倍数为
为了使|A|=Auf>3,图8.2.1所示振荡电路中负反馈支路的参数应满足以下关系: RF > 2R’ (8.2.6)
三、振荡电路中的负反馈
根据以上分析可知,RC串并联网络振荡电路中,只要达到|A|>3,即可满足产生正弦波振荡的起振条件。如果|A|的值过大,由于振荡偏度超出放大电路的线性放大范围而进入非线性区,输出波形将产生明显的失真。另外,放大电路的放大倍数因受环境温度及元件老化等因素影响,也要发生波动。以上情况都将直接影响振荡电路输出波形的质量,因此,通常都在放大电路中引入负反馈以改善振荡波形。在图8.2.1所示的RC串并联网络振荡电路中,电阻RF和R’引入了一个电压串联负反馈,它的作用不仅可以挺高放大倍数的稳定性,改善振荡电路的输出波形,而且能够进一步提高放大电路的输入电阻,降低输出电阻,从而减小了放大电路对RC串并联网络选频特性的影响,提高了振荡电路的带负载能力。
改变电阻RF和R’阻值的大小可以调节负反馈的深度。RF愈小,则负反馈系数F=R’/ RF+R’愈大,负反馈深度愈深,放大电路的电压放大倍数愈小;反之,RF愈大,则负反馈系数F愈小,即负反馈愈弱,电压放大倍数愈大。如电压放大倍数太小,不能满足|A|>3条件,则振荡电路不能起振;如电压放大倍数不大,则可能输出幅度太大,使振荡波形产生明显的非线性失真,应调整RF和R’的阻值,使振荡电路产生比较稳定而失真较小的正弦波信号。
四、振荡频率的调节
只要改变电阻R或电容C的值,即可调节振荡频率。例如,在RC串并联网络中,利用波段开关换接不同容量的电容对振荡频率进行粗调,利用同轴电位器对振荡频率进行细调。采用这种办法可以很方便地在--个比较宽广的范围内对振荡频率进行连续调节。
8.2.2 其他形式的RC振荡电路
除了文氏电桥振荡电路以外,其他常用的RC振荡电路有移相式振荡电路等等。
移相式振荡电路由一个反相输入比例电路和三节RC移相电路组成,如上图所示。 由于集成运放采用反相输入方式,故放大电路的相位移 =180°。如反馈网络再移相180°,此电路即可满足产生正弦波振荡的相位平衡条件。
已知一节RC电路的移相范围为0一90°,不可能满足振荡的相位条件。两节RC电路的移相范围为0一180°,但在接近180°时,输出电压已接近于零,无法同时满足振荡的幅度平衡条件和相位平衡条件。三节RC电路的移相范圈为0~270°,存在--个频率fo,其相 =180°,此时电路满足振荡的相位平衡条件。
由以上分析可知,在移相式振荡电路中,至少要用三节RC电路(RC超前移相电路或RC滞后移相电路均可)才能满足振荡的相位平衡条件。在上图中,采用三节RC超前移相电路,它的第三节RC电路由C3和放大电路的输入电阻组成。
在上图所示的移相式振荡电路中,通常选C1=C2=C3=C,R1=R2=R。此时,根据振荡的相位平衡条件和幅度平衡条件,可求得电路的振荡频率为
RF > 12R (8.2.8)
RC移相式振荡电路具有结构简单、经济等优点。缺点是选频作用较差,频率调节不方便,输出幅度不够稳定,输出波形较差。一般用于振荡频率固定且稳定性要求不高的场合,其频率范围为几赫到几十千赫。
1)LC并联电路具有选频特性,在谐振顽率fo处,电路为纯电阻性。当f<fo时,呈电感性;f>fo时,呈电容性。且当频率从fo上升或下降时,等效阻抗|Z|都将减小。 2)谐振频率fo的数值与电路参数有关,当Q》l时,fo ≈ 1/2 LC 。
3) 电路的品质因数Q =woL/R值愈大,则幅频特性愈尖锐,即选频特性愈好。同时,谐振时的阻抗值Zo也愈大。
下面再来分析并联谐振时,LC回路中的电流情况。
在谐振时,电容中电流的幅值为
而LC并联回路的输入电流为
则
当Q》1时,可得 |Ic|>>|I|, |IL|>>|I|, |Ic|≈|IL|
此时在LC谐振回路中,电容支路的电流与电感支路的电流,其幅值近似相等,谐振回路的输入电流极小,即谐振回路的外界影响可以忽略。这个结论对分析LC振荡电路也是极为有用的。
8.3.2 电感三点式振荡电路
一、电路的组成
在实际工作中,为避免确定变压器同名端的麻烦,他为了绕制线圈的方便,采取了自耦形式的接法,如上图所示。由于电感L1和L2引出三个端点,所以通常称为电感三点式振荡电路。图中LC并联电路的下端3通过耦合电容Cb接三极管的基极b,中间抽头2接至电源Vcc,在交流通路中2端接地,所以电感L2上的电压就是送回到三极管基极回路的反馈电压Uf。 假设在a点处将电路断开,并加上输入信号Ui。 由于谐振时LC并联回路的阻抗为纯阻性,因此集电极电压Uc与Ui反相,即ΨA =180°。而L2上的反馈电压Uf与Uc也反相,即ΨF =l80°,所以电路满足相位平衡条件。
二、振荡频率和起振条件
如前所述,当谐振回路的Q值很高时,振荡频率基本上等于LC回路的谐振频率,即
L = L1 + L2 + 2M
其中M为线圈L1与L2之间的互感。
根据幅度平衡条件可以证明,起振条件为
电感三点式振荡电路的特点是:
1、由于线圈L1和L2之间耦合很紧,因此比较容易起振。改变电感抽头的位置,即改变L2/L1的比值,可以获得满意的正弦波输出,且振荡幅度较大。根据经验,通常可以选择反馈线圈L2的圈数为整个线圈的1/8到1/4。具体的圈数比应该通过实验调整来确定。
2、调节频率方便。采用可变电容,可获得一个较宽的频率调节范围。
3、一般用于产生几十兆赫以下的频率。
4、由于反馈电压取自电感L2而电感对高次谐波的阻抗较大,不能将高次谐波短路掉。因输出波形中含有较大的高次谐波,故波形较差。
5、由于电感三点式振荡电路的输出波形较差,且频率稳定度不高,因此通常用于要求不高的设备中,例如高频加热器、接收机的本机振荡等。
8.3.4 电容三点式振荡电路
为了获得良好的正弦波,可将图8.3.4中的电感L1、L2改用对高次谐波呈现低阻抗的电容C1、C2,同时将原来的电容C改为电感L,以达到谐振的效果,这就是电容三点式振荡电路。为了构成放大管输出回路的直流通路,在电路中加了集电极负载Rc。如下图所
在上图中,由于3端通过耦合电容Cb接三极管的基极b,而2端接地,所以电容C2两端的电压就是反馈电压Uf。 假设将电路从a点姓断开,则读者不难分析当LC回路谐振时,uf与Ui同相,电路满足相位平衡条件。同理,振荡频率基本上等于LC回路的谐振频率, 即
电容三点式振荡电路的特点是:
1)由于反馈电压取自电容C2电容对于高次谐波阻抗很小,于是反馈电压中的谐波分量很小,所以输出波形较好。
2)因为电容C1、C2的容量可以选得较小,并将放大管的极间电容也计算到C1、C2中去,因此振荡频率较高,-般可识达到100MHz以上。
3)调节C1或C2可以改变振荡频率,但同时会影响起振条件,因此这种电路适于产生固定频率的振荡。如果要改变频率,可在L两端并联一个可变电容,如后面表8-2中所示。由于固定电容C1、C2的影响,频率的调节范围比较窄。另外也可以采用可调电感来改变频率。通常选择两个电容之比为C1/C2≤l,可通过实验调整来最后确定电容的比值。
石英谐振器的符号和等效电路如上图所示。当晶体不振动时,可以看成是一个平板电容器Co,称为静电电容。Co与晶片的几何尺寸和电极面积有关,一般约为几个皮法到几十皮法。当晶体振动时,有一个机械振动的惯性,用电感L来等效,一般L值为l0-3~1O-2H。晶片的弹性一般以电容C来等效,C值为l0-2~10-1pF。L、C的具体数值与晶体的切割方式,晶片和电极的尺寸、形状等有关。晶片振动时,因摩擦而造成的损耗则用电阻R来等效,它的数值约为lO2 。由于晶片的等效电感L很大,而等效电容C很小,电阻R也小,因此回路的品质因数Q很大,可达104~106,再加上晶片本身的固有频率只与晶片的几何尺寸有关,所以很稳定,而且可做得很精确。因此,利用石英谐振器组成振荡电路,可获得很高的频率稳定性。 从石英谐振器的等效电路可知,这个电路有两个谐振频率,当L、C、R支路串联谐振时,等效电路的阻抗最小(等于R),串联谐振频率为
三角波发生电路
一、电路组成
上图所示为一个三角波发生电路。图中集成运放A1组成滞回比较器,A2组成积分电路。滞回比较器输出的矩形波加在积分电路的反相输入端,而积分电路输出的三角波又接到滞回比较器的同相输入端,控制滞回比较器输出端的状态发生跳变,从而在A2的输出端得到周期性的三角波。 二、工作原理
假设,t=0时滞回比较器输出端为高电平,即u01=+UZ,而且假设积分电容上的初始电压为零。由于A1同相输入端的电压u+同时与u01。和a0有关,根据叠加原理,可得
则此时u+也为高电平。但当u01=+UZ时,积分电路的输出电压u+将随着时间往负方向线性增长, u+随之减小,当减小至u+= u-=0时,滞回比较器的输出端将发生跳变,使u01=-UZ,同时u+将跳变成为一个负值。以后,积分电路的输出电压将随着时间往正方向线性增长,u+也随之增大,当增大至u+= u-=0时,滞回比较器的输出端再次发生跳变,便u01=+UZ,同时u+也跳变成为一个正值。然后重复以上过程,于是可得滞回比较器的输出电压u01为矩形波,而积分电路的输出电压u0为三角波,波形如下图所示。
8.5.2锅齿波发生电路 在示波器的扫描电路以及数字电压表等电路中,常常需要使用锯齿波信号。
从以上的分析中可以看出,如果在三角波发生电路中,有意识地使积分电容充电和放电的时间常数相差悬殊,则在积分电路的输出端即可得到锯齿波信号。
一、电路组成
在三角波发生电路的基础上,用二极管VD1、VD2和电位器RW代替原来的积分电阻,使积分电容的充电和放电回路分开,即成为锯齿波发生电路,如上图所示。 假设调节电位器Rw滑动端的位置,使,则电容充电的时间常数将比放电时间常数小得多,于是充电过程很快,而放电过程很慢,此时积分电路的输出波形u0如下图所示。由图可见,T1< <T2,u0成为锯齿波。