4 篇文章 1 订阅

# Theorem

Let  αR  be a real number.

Let  xR  be a real number such that  |x|<1 .

Then:

(1+x)α=n=0αnn!xn=n=01n!(k=0n1(αk))xn

where  αn  denotes the falling factorial.

That is:

(1+x)α=1+αx+α(α1)2!x2+α(α1)(α2)3!x3+

## Proof

Let  R  be the radius of convergence of the power series:

f(x)=n=0k=0n1(αk)n!xn
1R=limn|α(α1)(αn)|(n+1)!n!|α(α1)(αn+1)|
 1R = limn→∞|α(α−1)⋯(α−n)|(n+1)!n!|α(α−1)⋯(α−n+1)| = limn→∞|α−n|n+1 = 1

Thus for  |x|<1 Power Series Differentiable on Interval of Convergence applies:

Dxf(x)=n=1k=0n1(αk)n!nxn1

 (1+x)Dxf(x) = ∑n=1∞∏k=0n−1(α−k)(n−1)!xn−1+∑n=1∞∏k=0n−1(α−k)(n−1)!xn = α+∑n=1∞⎛⎝⎜⎜⎜⎜∏k=0n(α−k)n!+∏k=0n−1(α−k)(n−1)!⎞⎠⎟⎟⎟⎟xn = α+∑n=1∞∏k=0n(α−k)(n−1)!(1n+1α−n)xn = α+∑n=1∞∏k=0n(α−k)(n−1)! αn(α−n)xn = α⎛⎝⎜⎜⎜⎜1+∑n=1∞∏k=0n−1(α−k)n!xn⎞⎠⎟⎟⎟⎟ = αf(x)

Gathering up:

(1+x)Dxf(x)=αf(x)

Thus:

Dx(f(x)(1+x)α)=α(1+x)α1f(x)+(1+x)αDxf(x)=0

So  f(x)=c(1+x)α  when  |x|<1  for some constant  c .

But  f(0)=1  and hence  c=1 .

## Historical Note

The General Binomial Theorem was announced by Isaac Newton in 1676.

However, he had no real proof.

Euler made an incomplete attempt in 1774, but the full proof had to wait for Gauss to provide it in 1812.

• 1
点赞
• 0
评论
• 0
收藏
• 一键三连
• 扫一扫，分享海报

02-10 956
08-25 1296

08-16 126
10-04 3183
03-28 4096
05-22 5336
12-04 1154
12-18 2万+
12-20 3444
11-27 5956
08-17 8191
01-20 7840
08-14 8345
03-16 1万+
10-22 2933
03-30 1150