# Theorem

Let αR be a real number.

Let xR be a real number such that |x|<1.

Then:

(1+x)α=n=0αnn!xn=n=01n!(k=0n1(αk))xn

where αn denotes the falling factorial.

That is:

(1+x)α=1+αx+α(α1)2!x2+α(α1)(α2)3!x3+

## Proof

Let R be the radius of convergence of the power series:

f(x)=n=0k=0n1(αk)n!xn
1R=limn|α(α1)(αn)|(n+1)!n!|α(α1)(αn+1)|
 1R = limn→∞|α(α−1)⋯(α−n)|(n+1)!n!|α(α−1)⋯(α−n+1)| = limn→∞|α−n|n+1 = 1

Thus for |x|<1Power Series Differentiable on Interval of Convergence applies:

Dxf(x)=n=1k=0n1(αk)n!nxn1

 (1+x)Dxf(x) = ∑n=1∞∏k=0n−1(α−k)(n−1)!xn−1+∑n=1∞∏k=0n−1(α−k)(n−1)!xn = α+∑n=1∞⎛⎝⎜⎜⎜⎜∏k=0n(α−k)n!+∏k=0n−1(α−k)(n−1)!⎞⎠⎟⎟⎟⎟xn = α+∑n=1∞∏k=0n(α−k)(n−1)!(1n+1α−n)xn = α+∑n=1∞∏k=0n(α−k)(n−1)! αn(α−n)xn = α⎛⎝⎜⎜⎜⎜1+∑n=1∞∏k=0n−1(α−k)n!xn⎞⎠⎟⎟⎟⎟ = αf(x)

Gathering up:

(1+x)Dxf(x)=αf(x)

Thus:

Dx(f(x)(1+x)α)=α(1+x)α1f(x)+(1+x)αDxf(x)=0

So f(x)=c(1+x)α when |x|<1 for some constant c.

But f(0)=1 and hence c=1.

## Historical Note

The General Binomial Theorem was announced by Isaac Newton in 1676.

However, he had no real proof.

Euler made an incomplete attempt in 1774, but the full proof had to wait for Gauss to provide it in 1812.

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120