帕塞瓦尔定理(能量守恒定理)

P帕塞瓦尔定理指出,一个信号所含有的能量(功率)恒等于此信号在完备正交函数集中各分量能量(功率)之和。它表明信号在时域的总能量等于信号在频域的总能量,即信号经傅里叶变换后其总能量保持不变,符合能量守恒定律。







Plancherel's theorem编辑

假定A(x)和B(x)都是平方可积的(参照勒贝格测度)复变函数,且定义在R上周期为2π的区间上,分别写成傅里叶级数的形式:
则有:

物理学和工程学上使用的记号

在 物理学 和 工程学 中, 帕塞瓦尔定理通常描述如下:

\int_{-\infty}^\infty | x(t) |^2 \, dt   =   \int_{-\infty}^\infty | X(f) |^2 \, df

其中X(f) = \mathcal{F} \{ x(t) \} 为 x(t) 的连续傅立叶变换(以归一化酉形式),而f代表x的频率分量(非角频率

帕塞瓦尔定理的此表达形式解释了波形x(t)依时间域t累积的总能量与该波形的傅立叶变换X(f)在频域域f累积的总能量相等。

对于离散时间信号,该理论表达式变换为:

\sum_{n=-\infty}^\infty | x[n] |^2 = \frac{1}{2\pi} \int_{-\pi}^\pi | X(e^{i\phi}) |^2 d\phi

其中,Xx离散时间傅立叶变换(DTFT),而Φ为x角频率每样本)。

此外,对于离散傅立叶变换 (DFT),表达式变换为:

\sum_{n=0}^{N-1} | x[n] |^2  =   \frac{1}{N} \sum_{k=0}^{N-1} | X[k] |^2

其中,X[k]为x[n]的DFT变换,变换前后样本长度皆为N



阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页