[HNOI2015]亚瑟王 题解

[HNOI2015]亚瑟王

[HNOI2015]亚瑟王

根据期望的线性性质,我们考虑每一张牌的贡献。也就是每一张牌被使用的概率。

显然第一张牌使用的概率就是 1 − ( 1 − p 1 ) r 1 - (1 - p_1) ^ r 1(1p1)r

但是发现之后的牌的使用依赖于前面的牌的使用,因为如果前面有 j j j 张牌被使用了,相当于有 j j j 轮对于当前牌是无效的。

我们考虑进行 d p \tt dp dp,设 f ( i , j ) f(i, j) f(i,j) 表示前 i i i 张使用了 j j j 张牌的概率。
f ( i , j ) = { f ( i − 1 , j ) × ( 1 − p i ) r − j f ( i − 1 , j − 1 ) × [ 1 − ( 1 − p i ) r − j + 1 ] f(i, j) = \begin{cases} f(i - 1, j) \times \left(1 - p_i\right)^{r - j} \\ f(i -1, j - 1) \times \left[1 - (1 - p_i)^{r - j + 1}\right] \end{cases} f(i,j)={f(i1,j)×(1pi)rjf(i1,j1)×[1(1pi)rj+1]

F ( i ) = ∑ k ≤ i f ( i − 1 , k ) × [ 1 − ( 1 − p i ) r − j ] F(i) = \begin{aligned} \sum_{k \le i} f(i - 1,k) \times \left[1 - (1 - p_i)^{r -j}\right] \end{aligned} F(i)=kif(i1,k)×[1(1pi)rj]

#include <bits/stdc++.h>
using namespace std;

//#define Fread
//#define Getmod

#ifdef Fread
char buf[1 << 21], *iS, *iT;
#define gc() (iS == iT ? (iT = (iS = buf) + fread (buf, 1, 1 << 21, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++)
#define getchar gc
#endif // Fread

template <typename T>
void r1(T &x) {
	x = 0;
	char c(getchar());
	int f(1);
	for(; c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
	for(; '0' <= c && c <= '9';c = getchar()) x = (x * 10) + (c ^ 48);
	x *= f;
}

template <typename T,typename... Args> inline void r1(T& t, Args&... args) {
    r1(t);  r1(args...);
}

#ifdef Getmod
const int mod  = 1e9 + 7;
template <int mod>
struct typemod {
    int z;
    typemod(int a = 0) : z(a) {}
    inline int inc(int a,int b) const {return a += b - mod, a + ((a >> 31) & mod);}
    inline int dec(int a,int b) const {return a -= b, a + ((a >> 31) & mod);}
    inline int mul(int a,int b) const {return 1ll * a * b % mod;}
    typemod<mod> operator + (const typemod<mod> &x) const {return typemod(inc(z, x.z));}
    typemod<mod> operator - (const typemod<mod> &x) const {return typemod(dec(z, x.z));}
    typemod<mod> operator * (const typemod<mod> &x) const {return typemod(mul(z, x.z));}
    typemod<mod>& operator += (const typemod<mod> &x) {*this = *this + x; return *this;}
    typemod<mod>& operator -= (const typemod<mod> &x) {*this = *this - x; return *this;}
    typemod<mod>& operator *= (const typemod<mod> &x) {*this = *this * x; return *this;}
    int operator == (const typemod<mod> &x) const {return x.z == z;}
    int operator != (const typemod<mod> &x) const {return x.z != z;}
};
typedef typemod<mod> Tm;
#endif

//#define int long long
const int maxn = 220 + 5;
const int maxm = maxn << 1;

double f[maxn][maxn];
int n, r, d[maxn];
double ksm(double x,int mi) {
    double res(1);
    while(mi) {
        if(mi & 1) res = res * x;
        mi >>= 1;
        x *= x;
    }
    return res;
}

double p[maxn][maxn], pp[maxn];
double F[maxn];

void Solve() {
    int i, j;
    r1(n, r);
    for(i = 1; i <= n; ++ i) F[i] = 0;
    for(i = 1; i <= n; ++ i) scanf("%lf%d", &pp[i], &d[i]);
    for(i = 0; i <= n + 2; ++ i) for(j = 0; j <= n + 2; ++ j) f[i][j] = p[i][j] = 0;
    for(i = 1; i <= n; ++ i) {
        p[i][0] = 1;
        for(j = 1; j <= r + 1; ++ j)
            p[i][j] = p[i][j - 1] * (1 - pp[i]);
    }
    f[0][0] = 1;
    for(i = 1; i <= n; ++ i) for(j = 0; j <= i; ++ j) {
        f[i][j] = f[i - 1][j] * p[i][r - j];
        if(j > 0)
            f[i][j] += f[i - 1][j - 1] * (1 - p[i][r - j + 1]);
    }
    F[1] = 1 - p[1][r];
    for(i = 2; i <= n; ++ i) {
        for(j = 0; j < i; ++ j)
            F[i] += f[i - 1][j] * (1 - p[i][r - j]);
    }
    double ans(0);
    for(i = 1; i <= n; ++ i) ans += F[i] * d[i];
    printf("%.12lf\n", ans);
}

signed main() {
//    freopen("S.in", "r", stdin);
//    freopen("S.out", "w", stdout);
    int i, j, T;
    r1(T); while(T --) Solve();
	return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值