港口发展历程
20世纪60年代全球物流行业兴起,港口作为商品流通的枢纽,在全球物流系统中发挥着重要的作用。随着经济全球化进程的加快,科技革命迅猛发展,产业结构不断优化升级,高效率的现代港口已成为区域经济发展与产业结构升级的重要支撑。
港口的发展,从最初的区域间商品流通中心,伴随着全球商贸业和航运业的繁荣,转型为贸易中心和商业中心,逐渐成为具备货物仓储、运输贸易信息服务、货物配送等多元化服务的物流、贸易、工业与金融中心。进入21世纪以来,港口成为兼具信息化、网络化与敏捷化的综合服务中心。
人工智能发展阶段
人工智能,自1956年在达特茅斯会议被美国博士约翰麦卡锡首次提出,发展至今共经历了三次浪潮。行业对人工智能的定义,通常是指人类通过分析数据和进行机器学习来赋予机器类人的能力,使得机器人能代替人类进行包括认知、识别、分析、决策等智能行为的过程。
00s-至今,深度学习算法走向盛行,为人工智能的蓬勃发展奠定了基础。伴随着芯片、超级计算机、云计算带来的算力提升,物联网、大数据技术带来的数据爆发和深度挖掘利用,加上行业人才的积累,促使着人工智能从实验室走向了商业化场景应用。尤其交通、金融、零售、教育、医疗
等行业,成为了人工智能落地的领先赛道:市场规模、企业数量、投资额度,经历着超前的增长。
目前的技术层主要集中在:
自然语言处理: 研究人类如何与计算机通过自然语言进行有效的交流,需要通过语言建模,语言表达,机器翻译,语言生成来实现。
计算机视觉:通过模仿人类的视觉系统从而获得近似于人类获取、分解、理解图像以及系列图像的能力。可以分为图像分类、目标检测、目标跟踪以及图像分割。
智能语音:通过分析理解合成人类的语音从而达到机器人与人类进行语音交流的过程。可以分为语音合成、语音识别以及语音评测技术。
知识图谱:通过节点和关系组成图谱,将知识以网状的形式呈现出来。
应用层:
人工智能的行业应用,需要基础的算力、算法、行业大数据,同时需要对场景的理解。目前专用型人工智能已经覆盖各大商业化应用场景,关注消费者的领域首先成为商业化落地的主流,如教育、零售、医疗。伴随着产业互联网转型的趋势,人工智能+产业正在成为下半场的深耕领域,以制造业为代表的传统领域正在数字化转型的探索中迎来人工智能赋能的新机遇。
(1)对劳动力的赋能和替代,提高业务效率
人工智能最直接、显著的促进,在于自动实现工作任务,除了替代传统自动化所能够完成的重复性、危险性工作外,人工智能技术的学习能力能够解决一些复杂的、专业的、 灵活的工作。这在劳动力成本增加、企业高效发展的商业竞争环境中,举足轻重。比如,通过人工智能技术,审计
师不必花费大量时间仅获得取样调查,而能够快速实现对企业票据全面审查。
(2)对管理决策的智能支持,精准运营
未来进行商业决策的过程中,管理者会依赖于人工智能系统提供的建议,以数据驱动的模拟计算,辅助决策流程。比如,营销管理就是目前典型案例之一,人工智能实现了对用户画像的精确描绘,依靠多元异质数据联合建模,实现精准营销投放和个性化广告流。未来,智能机器助理、顾问,将成为管理者的标配。
(3)对信息/数据的产生和应用,创新业务开拓
随着人工智能的场景化应用,基于信息/数据的更多创新业务机会被激发。比如,自动驾驶汽车在行驶过程中产生实时道路环境和交通数据,帮助城市道路规划、调整收费模式、布局区域商铺等;而在车辆内部对乘客识别的数据,促生了新的广告、内容、电商、娱乐商机。或者如,智慧
孵化器通过识别企业访客数量、会议室使用等数据,帮助政府向企业提供更有针对性的税收优惠。
(4)对资本/资源的有效利用,降本增效
凭借着人工智能的自主学习、适应和升级能力,行业实际应用中,产生可观的长期回报,提升投资回报比。比如在港口集装箱流转过程中,采用机器视觉识别集装箱号码,对比传统技术投入小、效率高,经济效益明显。
另一方面,建立在大数据分析基础上的人工智能,能够快速把握市场流动性,在未来发现一些新机会,优化资本的效率、准确性与速度,将资本/资源投向更关键的领域;并且通过使用基于人工智能的风险管理技术,实现对风险的有效管理以及资本/资源优化。
人工智能在物流行业落地应用示例
人工智能在港口的落地处于初级应用阶段,主要集中在港口生产作业一线。
• 从港口内部生产作业角度,将人工智能应用分为集装箱横向流转过程( “一横” ) 、 纵向运营管理(“一纵”) 两个层面。
• 从整个大物流体系角度,智慧港口作为智慧物流的重要组成部分,探索人工智能在物流服务链( “一链” ) 、区域/全球港口协同网(“一网” ) 两个角度的应用。