(保姆式教程:从下数据到画图)python如何利用EOF分析SSTA海温异常现象并画图

最近,在学习如何利用python中的EOF 对太平洋附近的1979-2004年出现的海温异常进行分析。

EOF分析是气象分析中常见的一种分析方法,也被称为经验正交函数。经过EOF分析,可以将几十年的海温数据变成几个空间模态和时间序列,这样就可以通过空间模态大致分析一些变化趋势,话不多说,接下来我们就开始看如何对SSTA进行EOF分解吧!

首先我们需要分析的数据是SSTA,我选取的是1979—2004年的海温数据,下载的网站是

https://www.metoffice.gov.uk/hadobs/hadisst/index.html

选取首页的main data page,进入后有很多可以选择的下载数据。

这里选取第一个文件下载,进入python进行运行。

首先我们读取这个nc文件。

#读取数据
path='C:\\Users\\user\\Desktop\\data\\SST\\HadISST_sst.nc'
SST=xr.open_dataset(path)

查看SST的基本信息:

我们可以看出该数据的时间范围为1840—2021年,但是我们需要分析的是1979—2004年的数据(此处为何选择1979为起点,是因为其实1979年之前的数据准确度都不太够,所以一般分析的时候选取1979作为起点分析。)

其中我们也可以发现我们的经度范围为-180-180,我们此处的分析范围是太平洋地区的厄尔尼诺和拉尼娜现象,所以我们的经纬度范围一定要足够准确才可以,此处我选取 latitude=slice(30,-30),longitude=slice(100,300),那么就会有一个事情需要做,就是我们需要使用cdo对该nc文件进行一个处理,将其中的经度范围从-180-180改为0-360。

关于cdo的内容可以学习这篇文章:cdo常用命令介绍

一些操作可以看这篇文章:如何解决 cdo转换经度-180~180 为0~360

但是操作过程中会发现一些问题,比如我这个数据集即使是用上述方法依然会报错,此时我们去看一下这个nc文件的基本信息

cdo infos HadISST_sst.nc

 我们可以发现,在文章中需要将generic转化为lonlat的步骤在这里根本不需要,因为我们本来就有一层是lonlat ,所以我们只要将这一层lonlat取出来作为一个新的nc文件进行转化即可。

cdo selgrid,lonlat HadISST_sst.nc sst2.nc

这就取出来啦,此时进行上述文章中的操作:

 cdo sellonlatbox,0,360,-90,90 sst2.nc sst3.nc

 

 这样就成功转化啦!

接下来我们做一些进行EOF分析的准备工作:

首先进行EOF分析必须要安装eof的模块:

conda install -c conda-forge eofs

对数据进行一些处理:

path='C:\\Users\\use
评论 49
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值